
FLOW OF CONTROL

Flow of Control

 Sequential flow of control

 Statement in a program are normally executed one
after another.

 Often it is desirable to alter the sequential
flow of control to provide for
 a choice of action

 if, if-else, switch

 ,or a repetition of action

 while, for, do

Relational, Equality, and Logical
Operators

 true: nonzero value

 false: zero value

Operator Associativity

 () ++ (postfix) -- (postfix) left to right

 + (unary) - (unary) ++ (prefix) -- (prefix) ! right to left

 * / % left to right

 + - left to right

< <= > >= left to right

== != left to right

&& left to right

|| left to right

?: right to left

 = += -= *= /= etc. right to left

, (comma operator) left to right

Operator precedence and associativity

Relational Operators and
Expressions

expr < expr

expr > expr

expr <= expr

expr >= expr

<Examples> <NOT Examples>

a < 3 a =< b /* out of order */

a > b a < = b /* space not allowed*/

-1.3 >= (2.0 * x + 3.3) a >> b /* shift expression */

 a < b

 If a is less than b, then the expr. has the int value 1 (true).

 If a is not less than b, then the expr. has the int value 0 (false).

Relational Operators and
Expressions

 Arithmetic conversion
 On many machines, a < b is implemented as a – b < 0.

Expression Equivalent expression Value

'a' + 1 < c ('a' + 1) < c 1

- i - 5 * j >= k +1 ((- i) - (5 * j)) >= (k +1) 0

3 < j < 5 (3 < j) < 5 1

x - 3.333 <= x + y (x - 3.333) <= (x + y) 1

x < x + y x < (x + y) 0

Declarations and Initializations

char c = 'w';

int i = 1, j = 2, k = -7;

double x= 7e+33, y = 0.001

x < x + y

(x – (x + y)) < 0.0

The values of x and x + y are
equal, so the expr. will yield
the int value 0.

3<j && j<5  (3<j) && (j<5)

Equality Operators and
Expressions

expr == expr

expr != expr

<Examples> <NOT Examples>

c == ‘A’ a = b /* assignment */

k != -2 a = = b - 1 /* space not allowed*/

x + y == 3 * z – 7 (x + y) =! 44 /* (x + y) = (!44) */

 a == b

 is either true or false

 is implemented as a – b == 0

Equality Operators and
Expressions

!! A common programming error
if (a = 1)

…

if (a == 1)

…

Expression Equivalent expression Value

i == j j == i 0

i != j j != i 1

i + j + k == - 2 * - k ((i + j) + k) == ((- 2) * (- k)) 1

Declarations and Initializations

int i = 1, j=2, k=3;

Logical Operators and
Expressions

! expr (unary negation)

<Examples> <NOT Examples>

!a a! /* out of order */

!(x + 7.7) a != b /* “not equal” operator*/

!(a < b || c < d)

 ! expr
 If expr has value zero, ! expr has the int value 1 (true).

 If expr has nonzero value, ! expr has the int value 0 (false).

!!5  !(!5) has the value 1.

Logical Operators and
Expressions

Expression Equivalent expression Value

! c ! c 0

! (i - j) ! (i - j) 1

! i - j (! i) - j -7

! ! (x + y) ! (! (x + y)) 1

! x * ! ! y (! x) * (!(! y)) 1

Declarations and Initializations

char c = 'A';

int i = 7, j = 7;

double x= 0.0, y = 2.3;

Logical Operators and
Expressions

expr || expr (logical or)

expr && expr (logical and)

<Examples> <NOT Examples>

a && b a && /* missing operand */

a || b a | | b /* space not allowed*/

!(a < b) && c a & b /* bitwise operator */

3 && (-2 * a + 7) &b /* the address of b */

 && has higher precedence than ||.

 Both of && and || are of lower precedence than all unary,
arithmetic, equality, and relational operators.

Logical Operators and
Expressions

Expression Equivalent expression Value

i && j && k (i && j) && k 1

x || i && j - 3 x || (i && (j - 3)) 0

i < j && x < y (i < j) && (x < y) 0

i < j || x < y (i < j) || (x < y) 1

A' <= c && c <= 'Z' ('A' <= c) && (c <= 'Z') 1

c - 1 == 'A' || c + 1 == 'Z' ((c - 1) == 'A') || ((c + 1) == 'Z') 1

Declarations and Initializations

char c = 'B';

int i = 3, j = 3, k =3;

double x= 0.0, y = 2.3;

 Short-circuit Evaluation

 In evaluating the expr.s that are the operands of && and ||, the evaluation
process stops as soon as the outcome true or false is known.

expr1 && expr2 , if expr1 has value zero

expr1 || expr2 , if expr1 has nonzero value

Compound Statement

 Compound statement
 a series of declarations and statements surrounded by

braces

 block

 for grouping statements into an executable unit

 is itself a statement, thus it can be placed wherever a
statement is placed.
{

a = 1;
{ /* nested */

b = 2;
c = 3;

}
}

Expression and Empty Statement

 Expression statement
 an expression followed by ;

 Empty statement
 written as a single semicolon

 useful where a statement is needed syntactically

a = b; /* assignment statement */

a + b + c; /* legal, but no useful work gets done */

; /* empty statement */

printf(“%d\n”, a); /* a function call */

if and if-else Statements

if (expr)

statement

 If expr is nonzero, then statement is executed;
otherwise, statement is skipped and control passes to
the next statement.

if (j < k) {
min = j;
printf(“j is smaller than k\n”);

}

if and if-else Statements

if (expr)

statement1

else

statement2

if (c >= ‘a’ && c <= ‘z’)
++lc_cnt;

else {
++other_cnt;
printf(“%c is not a lowercase letter\n”, c);

}

if (i != j) {
i += 1;
j += 2;

};
else

i -= j; /* syntax error */

if and if-else Statements

if (a ==1)

if (b == 2) /* if statement is itself a statement */

printf(“***\n”);

 dangling else problem

if (a ==1)
if (b == 2)

printf(“***\n”);
else

printf(“###\n”);

if (a ==1)
if (b == 2)

printf(“***\n”);
else

printf(“###\n”);



An else attaches to the nearest if.

if and if-else Statements

if (c == ‘ ‘)
++blank_cnt;

else if (c >= ‘0’ && c <= ‘9’)
++digit_cnt;

else if (c >= ‘a’ && c <= ‘z’ || c >= ‘a’ && c <= ‘z’)
++letter_cnt;

else if (c == ‘\n’)
++nl_cnt;

else
++other_cnt;



if (c == ‘ ‘)
++blank_cnt;

else
if (c >= ‘0’ && c <= ‘9’)

++digit_cnt;
else

if (c >= ‘a’ && c <= ‘z’ || c >= ‘a’ && c <= ‘z’)
++letter_cnt;

else
….

while Statement

while (expr)
statement

next statement

 First expr is evaluated. If it is nonzero, then statement is
executed and control is passed back to expr. This
repetition continues until expr is zero.
 Its body gets executed zero or more times.

while ((c = getchar()) == ‘ ‘)

; /*empty statement*/

This code causes blank characters in the input stream to be
skipped.

for Statement

for (expr1; expr2; expr3)
statement

next statement

 First, expr1 (initialization) is evaluated.

 expr2 is evaluated. If it is nonzero, then statement is
executed, expr3 is evaluated, and control is passed back to
expr2.
 expr2 is a logical expression controlling the iteration.

 This process continues until expr2 is zero.

expr1;
while (expr2) {

statement

expr3;
}
next statement

for Statement

for (i =1; i <= n; ++i)

factorial *= i;

sum = 0;
for (i =1; i <= 10; ++i)

sum += i;

sum = 0;
i = 1;
for (; i <= 10; ++i)

sum += i;

sum = 0;
i = 1;
for (; i <= 10;)

sum += i++;
 

sum = 0;
i = 1;
for (; ;)

sum += i++;

Infinite Loop !!

for (………..)
for (………..)

for (………..)

statement

Comma Operator

expr1 , expr2

 expr1 is evaluated, and then expr2.

a = 0, b = 1

for (sum = 0, i =1; i <= 10; ++i)
sum += i;

for (sum = 0, i =1; i <= 10; sum += i, ++i)
;

for (sum = 0, i =1; i <= 10; ++i, sum += i)
;




do Statement

do
statement

while (expr);
next statement

 First statement is executed and expr is evaluated. If the
value of expr is nonzero, then control is passed back to
statement . When expr is zero, control passes to next

statement.

do Statement

do {
printf(“Input a positive integer: “);
scanf(“%d”, &n);
if (error = (n <= 0))

printf(“\nERROR: Do it again!\n\n”);

} while (error);

do {
a single statement

} while (…..);

For expressions of type float or double,
an equality test can be beyond the
accuracy of the machine.

double sum = 0.0, x;
for (x = 0.0; x != 9.9; x += 0.1)

sum += i;

Infinite Loop !!

 Use a relational expression!

break and continue Statements

break;
 causes an exit from the intermost enclosing loop or

switch statement

while (1) {
scanf(“%lf”, &x);
if (x < 0.0)

break; /* exit loop if x is negative */
printf(“%f\n”, sqrt(x));

}
/* break jumps to here */

break and continue Statements

continue;
 causes the current iteration of a loop to stop and

causes the next iteration of the loop to begin
immediately

for (i=0; i<TOTAL; ++i) {
c = getchar();
if (c >= ‘0’ && c <= ‘9’)

continue;
….. /* process other characters */

/*continue transfers control to here to begin next iteration*/

}

switch Statement

switch statement
 a multiway conditional statement generalizing the

if-else statement

switch (c) { /* c should be of integral type */
case ‘a’:

++a_cnt;
break;

case ‘b’:
case ‘B’:

++b_cnt;
break;

default:
++other_cnt;

}

(1) Evaluate the switch expression.

(2) Go to the case label having a constant
value that matches the value of the
expression in (1), or, if a match is not
found, go to the default label, or, if there
is no default label, terminate the switch.

(3) Terminate the switch when a break
statement is encountered, or terminate
the switch by “falling off the end”.

Conditional Operator

expr1 ? expr2 : expr3

 expr1 is evaluated.
 If it is nonzero(true), then expr2 is evaluated, and that is the

value of the conditional expression as a whole.

 If expr1 is zero(false), then expr3 is evaluated, and that is the
value of the conditional expression as a whole.

if (y < z)
x = y;

else
x = z;

x = (y < z) ? y : z;

Conditional Operator

expr1 ? expr2 : expr3

 Its type is determined by both expr2 and expr3

 is determined by both expr2 and expr3

 Different types  Usual Conversion Rules

 does not depend on which of expr2 or expr3 is evaluated.

Expression Equivalent expression Value Value

i==j ? a - 1 : b +1 (i==j) ? (a - 1) : (b +1) 99 int

j%3 == 0 ? i + 4 : x ((j%3) == 0) ? (i + 4) : x 7.07 double

j%3 ? i + 4 : x (j%3) ? (i + 4) : x 5.0 double

char a = 'a', b = 'b';

int i = 1, j = 2;

double x= 7.07;

Declarations and Initializations

