FLOW OF CONTROL

Flow of Control

Sequential flow of control

Statement in a program are normally executed one
after another.

Often it is desirable to alter the sequential
flow of control to provide for
a choice of action
if, if-else, switch
,or a repetition of action
while, for, do

Relational, Equality, and Logical
Operators

Operator precedence and associativity

Operator

Associativity

0

++ (postfix)

-- (postfix)

left to right

+ (unary)

- (unary)

++ (prefix) -- (prefix) !

right to left

*

/ %

left to right

left to right

left to right

left to right

left to right

left to right

right to left

etc.

right to left

, (comma operator)

left to right

true: nonzero value

false: zero value

Relational Operators and
Expressions

expr < expr
expr > expr

expr <= expr
expr >= expr

<Examples> <NOT Examples>

a<3 a =< b /* out of order */
a>b a < =b /* space not allowed™*/
-1.3>=(2.0*x+ 3.3) a>>b /*shift expression */

a<b
If ais less than b, then the expr. has the int value 1 (frue).
If a is not less than b, then the expr. has the int value O (false).

Relational Operators and
Expressions

Arithmetic conversion
On many machines, a < b is implementedasa - b < O.

Declarations and Initializations

char ¢ ="'wj;

int i=1j=2k=-7,

double x= 7e+33, y = 0.001

Expression Equivalent expression Value

a'+1<c (la"+ 1) <c 1

-i-5%j>=k+1 [(-1)-(5*))>=(k+1) |0 3¢j && j<5 < (3¢j) && (j<5)
3<j<5 3<) <5 1

Xx-3333 <=x+y |(x-3333) <= (x +Y) 1 X<ex+y

X <X+Y X < (X +Y) 0 (x - (x +y)<0.0

The values of x and x + y are
equal, so the expr. will yield
the int value O.

Equality Operators and

Expressions
_
expr == expr
expr 1= expr
<Examples> <NOT Examples>
c =="A’ a = b /* assignment */
k 1= -2 ==b -1 /* space not allowed*/
X+y==3*z-7 (x +y) =144 /* (x +y) = (144) */
na==b

is either true or false
is implementedasa - b ==

Equality Operators and

Expressions

Declarations and Initializations

int i=1,j=2 k=3;

Expression Equivalent expression Value
i ==] j == 0
1= j 1= 1
i+j+k==-2"-k [((i+))+k==(-2*(CKk) |

II'A common programming error

if (a =1)

i (a == 1)

Logical Operators and

Expressions
| expr (unary negation)
<Examples> <NOT Examples>
la al /* out of order */
I(x + 7.7) al=b /* "not equal” operator*/
l(a < b || ¢ < d)
| expr

If expr has value zero, ! expr has the int value 1 (true).
If expr has nonzero value, ! expr has the int value O (false).
15 < I(15) has the value 1.

Logical Operators and
Expressions

Declarations and Initializations

char ¢ ="A};
int i=7j=1
double x= 0.0,y = 2.3;

Expression Equivalent expression |Value
I c e 0

(i - j) (i -) 1
Li- (i) - -7

LT (X +y) (I (x +y)) 1
Ix*1lly x)*((y) 1

Logical Operators and

Expressions

expr || expr (logical or)

expr && expr (logical and)

<Examples> <NOT Examples>
a && b a && /* missing operand */
allb al|b /* space not allowed*/
I(a < b) && ¢ a&b /* bitwise operator */
3& (-2 *a +7) &b /* the address of b */

&& has higher precedence than ||.

Both of && and || are of lower precedence than all unary,
arithmetic, equality, and relational operators.

Logical Operators and
Expressions

Declarations and Initializations

char ¢ = 'B";

int i=3,j=3k=3;

double x= 0.0,y = 2.3;

Expression Equivalent expression Value
I && j && k (i && j) && k 1
|| i &&j -3 X || (i && (j - 3)) 0
I <] BB X <y (i <)) &8& (x <) 0
i <j|lx<y (<) x<y) 1
A'<=c8& c<="7 (A" <=¢) &8& (c <= "Z) 1
c-1=="A"||c+1=="7Z |((c-1)=="A)]|| (c+1) =="2Z) |1

Short-circuit Evaluation

In evaluating the expr.s that are the operands of && and ||, the evaluation
process stops as soon as the outcome true or false is known.

exprl &é& expr2 , if exprl has value zero
exprl || expr2 , if exprl has nonzero value

Compound Statement

Compound statement
a series of declarations and statements surrounded by
braces
block
for grouping statements into an executable unit
is itself a statement, thus it can be placed wherever a
statement is placed.

{
a=1;
{ /* nested */

b=2;
c = 3;

Expression and Empty Statement

Expression statement
an expression followed by ;

Empty statement
written as a single semicolon
useful where a statement is needed syntactically

a = b; /* assignment statement */

a+b+c; /* legal, but no useful work gets done */
; /* empty statement */

printf("%d\n", a); /* a function call */

if and if-else Statements

if (expr)
statement

If expr is nonzero, then statement is executed;
otherwise, statement is skipped and control passes to
the next statement.
if (j < k) {

min = j.

printf("j is smaller than k\n");

if and if-else Statements

]
. if (c >='a" && ¢ <= '7’
if (eXpr) £-+Ic cnt;)
statementl else {
++other_cnt;
else printf(“%c is not a lowercase letter\n”, c);
statement?2 }
if (i 1= j)
i+=1;
j += 2;
}
else

i -=] /* syntax error */

if and if-else Statements

1
if (a ==1)
if (b ==2) /* if statement is itself a statement */
printf("***\n");
o dangling else problem
if (a ==1) if (a ==1)
if (b==2) if (b==2)
printf("***\n"); &S printf("***\n");
else else
printf("###\n"); printf("##H#\n");

An else attaches to the nearest if.

if and if-else Statements

if (c=="")
++blank_cnt;

else if (c >='0' && c <="'9")
++digit_cnt;

else if (c >='a" && c <=2 || c >="'a" && c <='Z")
++|etter_cnt;

else if (c == "\n’)

++nl_cnt;
else if (c=="'")
++other_cnt; ++blank_cnt;
else
if (c >='0'&& c <="'9")
- ++digit_cnt:
else

if (c>='a && c <«='2" || ¢c >="'a && ¢c <= 'Z")
++|etter_cnt;
else

while Statement

while (expr)
statement
next statement

First expr is evaluated. If it is nonzero, then statement is
executed and control is passed back to expr. This
repetition continues until expr is zero.

Its body gets executed zero or more times.

while ((c = getchar()) == "' ")

/*empty statement™/
This code causes blank characters in the input stream fo be
skipped.

for Statement

for (exprl; expr2; expr3) exprl;
statement while (expr2) {
statement

next statement
expr3;

}

next statement

First, exprl (initialization) is evaluated.

expr2 is evaluated. If it is nonzero, then statement is
executed, expr3 is evaluated, and control is passed back to
expr2.

expr2 is a logical expression controlling the iteration.

This process continues until expr2 is zero.

for Statement

for (i =1; i <= n, ++i)
factorial *= i;

sum = O; sum = O;
sum = O; i=1; i=1;
for (i =1; i <= 10; ++i) & for (i <=10; ++i) & for (. i <=10;)
sum += i; sum += i; sum += i++;

sum = O; for (el)

i=1; for (..c......)

for (::) for (el)

sum += i++;
statement

Infinite Loop !!

Comma Operator

exprl , expr2
exprl is evaluated, and then expr2.
a=0,b=1

for (sum = 0, i =1; i <= 10; ++i)
sum += i;

for (sum = 0, i =1; i <= 10; sum += i, ++i)

H

for (sum =0, i =1; i <= 10; ++i, sum += i)

do Statement

do

statement
while (expr);
next statement

First statement is executed and expr is evaluated. If the
value of expr is nonzero, then control is passed back to
statement . When expr is zero, control passes to next

statement.

do Statement

do {
printf("Input a positive integer: “);
scanf("%d", &n);
if (error = (n <= 0))
printf("\nERROR: Do it againl\n\n");

} while (error):;

For expressions of type float or double,
an equality test can be beyond the
accuracy of the machine.

do { double sum = 0.0, x;
a single statement for (x = 0.0; x1=9.9; x += 0.1)
} while (.....); sum += i;
Infinite Loop !!

=> Use a relational expression!

break and continue Statements

break;

causes an exit from the intermost enclosing loop or
switch statement

while (1) {
scanf("%lf”, &x);
if (x < 0.0)
break; /* exit loop if x is negative */
printf("%f\n", sqrt(x)):
}

/* break jumps to here */

break and continue Statements

continue:

causes the current iteration of a loop to stop and
causes the next iteration of the loop to begin
immediately

for (i=0; i<TOTAL; ++i) {
¢ = getchar();
if (c >='0' && ¢ <= '9")
continue;

/* process other characters */
/*continue transfers control to here to begin next iteration*/

}

switch Statement

switch statement

a multiway conditional statement generalizing the
if -else statement

switch (c) { /* c should be of integral type */
case ‘a’:

|; ;-:;l::;n'l', (1) Evaluate the switch expression.
case 'b': (2) Go to the case label having a constant
case 'B': value that matches the value of the
++b ent: expression in (1), or, if a match is not
brecﬁ(' found, go to the defauh‘.label, or, if .’rher'e
defaulf:l is no default label, terminate the switch.
++other cnt: (3) Terminate the switch when a break
} _ statement is encountered, or terminate

the switch by "falling of f the end"”.

Conditional Operator

exprl ? expr2 : expr3

exprl is evaluated.

If it is nonzero(true), then expr2 is evaluated, and that is the
value of the conditional expression as a whole.

If exprl is zero(false), then expr3 is evaluated, and that is the
value of the conditional expression as a whole.

if (y < z)
xyzy; & x=(y<2z)?y:z
else

X = 2,

Conditional Operator

exprl ? expr2 : expr3

I'ts type is determined by both expr2 and expr3

is determined by both expr2 and expr3
Different types = Usual Conversion Rules
does not depend on which of expr2 or expr3 is evaluated.

Declarations and Initializations

char a="'a, b ="b';

int i=1j=2;

double x= 7.07;

Expression Equivalent expression Value |Value
i==j?7a-1:b +1 (i==)) 2 (@-1): (b +1) 99 int
%3 ==071i+4:x ((%3) ==0)? (i +4) :x 7.07 double
%371 +4:x (j%3) ? (i + 4) : x 5.0 double

