
FLOW OF CONTROL

Flow of Control

 Sequential flow of control

 Statement in a program are normally executed one
after another.

 Often it is desirable to alter the sequential
flow of control to provide for
 a choice of action

 if, if-else, switch

 ,or a repetition of action

 while, for, do

Relational, Equality, and Logical
Operators

 true: nonzero value

 false: zero value

Operator Associativity

 () ++ (postfix) -- (postfix) left to right

 + (unary) - (unary) ++ (prefix) -- (prefix) ! right to left

 * / % left to right

 + - left to right

< <= > >= left to right

== != left to right

&& left to right

|| left to right

?: right to left

 = += -= *= /= etc. right to left

, (comma operator) left to right

Operator precedence and associativity

Relational Operators and
Expressions

expr < expr

expr > expr

expr <= expr

expr >= expr

<Examples> <NOT Examples>

a < 3 a =< b /* out of order */

a > b a < = b /* space not allowed*/

-1.3 >= (2.0 * x + 3.3) a >> b /* shift expression */

 a < b

 If a is less than b, then the expr. has the int value 1 (true).

 If a is not less than b, then the expr. has the int value 0 (false).

Relational Operators and
Expressions

 Arithmetic conversion
 On many machines, a < b is implemented as a – b < 0.

Expression Equivalent expression Value

'a' + 1 < c ('a' + 1) < c 1

- i - 5 * j >= k +1 ((- i) - (5 * j)) >= (k +1) 0

3 < j < 5 (3 < j) < 5 1

x - 3.333 <= x + y (x - 3.333) <= (x + y) 1

x < x + y x < (x + y) 0

Declarations and Initializations

char c = 'w';

int i = 1, j = 2, k = -7;

double x= 7e+33, y = 0.001

x < x + y

(x – (x + y)) < 0.0

The values of x and x + y are
equal, so the expr. will yield
the int value 0.

3<j && j<5 (3<j) && (j<5)

Equality Operators and
Expressions

expr == expr

expr != expr

<Examples> <NOT Examples>

c == ‘A’ a = b /* assignment */

k != -2 a = = b - 1 /* space not allowed*/

x + y == 3 * z – 7 (x + y) =! 44 /* (x + y) = (!44) */

 a == b

 is either true or false

 is implemented as a – b == 0

Equality Operators and
Expressions

!! A common programming error
if (a = 1)

…

if (a == 1)

…

Expression Equivalent expression Value

i == j j == i 0

i != j j != i 1

i + j + k == - 2 * - k ((i + j) + k) == ((- 2) * (- k)) 1

Declarations and Initializations

int i = 1, j=2, k=3;

Logical Operators and
Expressions

! expr (unary negation)

<Examples> <NOT Examples>

!a a! /* out of order */

!(x + 7.7) a != b /* “not equal” operator*/

!(a < b || c < d)

 ! expr
 If expr has value zero, ! expr has the int value 1 (true).

 If expr has nonzero value, ! expr has the int value 0 (false).

!!5 !(!5) has the value 1.

Logical Operators and
Expressions

Expression Equivalent expression Value

! c ! c 0

! (i - j) ! (i - j) 1

! i - j (! i) - j -7

! ! (x + y) ! (! (x + y)) 1

! x * ! ! y (! x) * (!(! y)) 1

Declarations and Initializations

char c = 'A';

int i = 7, j = 7;

double x= 0.0, y = 2.3;

Logical Operators and
Expressions

expr || expr (logical or)

expr && expr (logical and)

<Examples> <NOT Examples>

a && b a && /* missing operand */

a || b a | | b /* space not allowed*/

!(a < b) && c a & b /* bitwise operator */

3 && (-2 * a + 7) &b /* the address of b */

 && has higher precedence than ||.

 Both of && and || are of lower precedence than all unary,
arithmetic, equality, and relational operators.

Logical Operators and
Expressions

Expression Equivalent expression Value

i && j && k (i && j) && k 1

x || i && j - 3 x || (i && (j - 3)) 0

i < j && x < y (i < j) && (x < y) 0

i < j || x < y (i < j) || (x < y) 1

A' <= c && c <= 'Z' ('A' <= c) && (c <= 'Z') 1

c - 1 == 'A' || c + 1 == 'Z' ((c - 1) == 'A') || ((c + 1) == 'Z') 1

Declarations and Initializations

char c = 'B';

int i = 3, j = 3, k =3;

double x= 0.0, y = 2.3;

 Short-circuit Evaluation

 In evaluating the expr.s that are the operands of && and ||, the evaluation
process stops as soon as the outcome true or false is known.

expr1 && expr2 , if expr1 has value zero

expr1 || expr2 , if expr1 has nonzero value

Compound Statement

 Compound statement
 a series of declarations and statements surrounded by

braces

 block

 for grouping statements into an executable unit

 is itself a statement, thus it can be placed wherever a
statement is placed.
{

a = 1;
{ /* nested */

b = 2;
c = 3;

}
}

Expression and Empty Statement

 Expression statement
 an expression followed by ;

 Empty statement
 written as a single semicolon

 useful where a statement is needed syntactically

a = b; /* assignment statement */

a + b + c; /* legal, but no useful work gets done */

; /* empty statement */

printf(“%d\n”, a); /* a function call */

if and if-else Statements

if (expr)

statement

 If expr is nonzero, then statement is executed;
otherwise, statement is skipped and control passes to
the next statement.

if (j < k) {
min = j;
printf(“j is smaller than k\n”);

}

if and if-else Statements

if (expr)

statement1

else

statement2

if (c >= ‘a’ && c <= ‘z’)
++lc_cnt;

else {
++other_cnt;
printf(“%c is not a lowercase letter\n”, c);

}

if (i != j) {
i += 1;
j += 2;

};
else

i -= j; /* syntax error */

if and if-else Statements

if (a ==1)

if (b == 2) /* if statement is itself a statement */

printf(“***\n”);

 dangling else problem

if (a ==1)
if (b == 2)

printf(“***\n”);
else

printf(“###\n”);

if (a ==1)
if (b == 2)

printf(“***\n”);
else

printf(“###\n”);

An else attaches to the nearest if.

if and if-else Statements

if (c == ‘ ‘)
++blank_cnt;

else if (c >= ‘0’ && c <= ‘9’)
++digit_cnt;

else if (c >= ‘a’ && c <= ‘z’ || c >= ‘a’ && c <= ‘z’)
++letter_cnt;

else if (c == ‘\n’)
++nl_cnt;

else
++other_cnt;

if (c == ‘ ‘)
++blank_cnt;

else
if (c >= ‘0’ && c <= ‘9’)

++digit_cnt;
else

if (c >= ‘a’ && c <= ‘z’ || c >= ‘a’ && c <= ‘z’)
++letter_cnt;

else
….

while Statement

while (expr)
statement

next statement

 First expr is evaluated. If it is nonzero, then statement is
executed and control is passed back to expr. This
repetition continues until expr is zero.
 Its body gets executed zero or more times.

while ((c = getchar()) == ‘ ‘)

; /*empty statement*/

This code causes blank characters in the input stream to be
skipped.

for Statement

for (expr1; expr2; expr3)
statement

next statement

 First, expr1 (initialization) is evaluated.

 expr2 is evaluated. If it is nonzero, then statement is
executed, expr3 is evaluated, and control is passed back to
expr2.
 expr2 is a logical expression controlling the iteration.

 This process continues until expr2 is zero.

expr1;
while (expr2) {

statement

expr3;
}
next statement

for Statement

for (i =1; i <= n; ++i)

factorial *= i;

sum = 0;
for (i =1; i <= 10; ++i)

sum += i;

sum = 0;
i = 1;
for (; i <= 10; ++i)

sum += i;

sum = 0;
i = 1;
for (; i <= 10;)

sum += i++;

sum = 0;
i = 1;
for (; ;)

sum += i++;

Infinite Loop !!

for (………..)
for (………..)

for (………..)

statement

Comma Operator

expr1 , expr2

 expr1 is evaluated, and then expr2.

a = 0, b = 1

for (sum = 0, i =1; i <= 10; ++i)
sum += i;

for (sum = 0, i =1; i <= 10; sum += i, ++i)
;

for (sum = 0, i =1; i <= 10; ++i, sum += i)
;

do Statement

do
statement

while (expr);
next statement

 First statement is executed and expr is evaluated. If the
value of expr is nonzero, then control is passed back to
statement . When expr is zero, control passes to next

statement.

do Statement

do {
printf(“Input a positive integer: “);
scanf(“%d”, &n);
if (error = (n <= 0))

printf(“\nERROR: Do it again!\n\n”);

} while (error);

do {
a single statement

} while (…..);

For expressions of type float or double,
an equality test can be beyond the
accuracy of the machine.

double sum = 0.0, x;
for (x = 0.0; x != 9.9; x += 0.1)

sum += i;

Infinite Loop !!

 Use a relational expression!

break and continue Statements

break;
 causes an exit from the intermost enclosing loop or

switch statement

while (1) {
scanf(“%lf”, &x);
if (x < 0.0)

break; /* exit loop if x is negative */
printf(“%f\n”, sqrt(x));

}
/* break jumps to here */

break and continue Statements

continue;
 causes the current iteration of a loop to stop and

causes the next iteration of the loop to begin
immediately

for (i=0; i<TOTAL; ++i) {
c = getchar();
if (c >= ‘0’ && c <= ‘9’)

continue;
….. /* process other characters */

/*continue transfers control to here to begin next iteration*/

}

switch Statement

switch statement
 a multiway conditional statement generalizing the

if-else statement

switch (c) { /* c should be of integral type */
case ‘a’:

++a_cnt;
break;

case ‘b’:
case ‘B’:

++b_cnt;
break;

default:
++other_cnt;

}

(1) Evaluate the switch expression.

(2) Go to the case label having a constant
value that matches the value of the
expression in (1), or, if a match is not
found, go to the default label, or, if there
is no default label, terminate the switch.

(3) Terminate the switch when a break
statement is encountered, or terminate
the switch by “falling off the end”.

Conditional Operator

expr1 ? expr2 : expr3

 expr1 is evaluated.
 If it is nonzero(true), then expr2 is evaluated, and that is the

value of the conditional expression as a whole.

 If expr1 is zero(false), then expr3 is evaluated, and that is the
value of the conditional expression as a whole.

if (y < z)
x = y;

else
x = z;

x = (y < z) ? y : z;

Conditional Operator

expr1 ? expr2 : expr3

 Its type is determined by both expr2 and expr3

 is determined by both expr2 and expr3

 Different types Usual Conversion Rules

 does not depend on which of expr2 or expr3 is evaluated.

Expression Equivalent expression Value Value

i==j ? a - 1 : b +1 (i==j) ? (a - 1) : (b +1) 99 int

j%3 == 0 ? i + 4 : x ((j%3) == 0) ? (i + 4) : x 7.07 double

j%3 ? i + 4 : x (j%3) ? (i + 4) : x 5.0 double

char a = 'a', b = 'b';

int i = 1, j = 2;

double x= 7.07;

Declarations and Initializations

