
AN OVERVIEW OF C

©1998- by Pearson Education, Inc. All Rights
Reserved.

Algorithmic Thinking

¨ Must be told in detail
what to do
¤ understandable to

computer
¤ for all possible cases

¨ Algorithmic Thinking
¤ Algorithms == Recipes

¨ Very diligent
¨ But, not so smart

Programming Languages

Algorithms: Developed by people

Computers: Execute algorithms

Programming
Languages

High-level languages

Assembly languages

Machine languages

How to Learn Programming
¨ Learn by doing

¤ Do exercises/practices
¤ Lectures will give you basic tools only

¨ In the lectures, you will learn:
¤ Language syntax
¤ Algorithmic thinking
¤ Ideas

¨ Read “An Overview of C” & Try by yourself
¤ A Book on C

Warning!!
¨ Lectures

¤ seem easy
¨ Textbook: An Overview of C

¤ seems that you understand well
¨ Programming assignments

¤ more difficult than it seems

¨ Expect many bugs in your programs

Programming maturity comes with
p.r.a.c.t.i.c.e!!

C Programming Language

¨ Born in the early 1970s with UNIX
¨ C is

¤ Small
n Fewer keywords

¤ Portable
n Code written on one machine easily moved to another

¤ Terse
n A very powerful set of operators
n Able to access the machine in the bit level

¤ Widely used
¤ The basis for C++ and Java

C Programming Language

¨ Criticism
¤ Complicated syntax
¤ No automatic array bounds checking
¤ Multiple use of such symbols as * and =

n **, ==

¨ Nevertheless, C is an elegant language
¤ No straitjacket on the programmer’s access to the

machine
¤ Powerful operators

Hello world 1/3

1. Create a C source file
¤ use a text editor

n Vi, text editor, Atom, ...

Hello world 2/3

2. Compile
1. Convert source codes to object codes
2. Compiler does the job

Hello world 3/3

3. Linking
¤ Convert object codes to executable file
¤ Linker does the job

4. Debugging
¤ Fix the bugs in the source codes
¤ Debugger does the job

5. Run or Excute

From Source to Executable

Debugging

Editor

Source
File 1

Source
File n

Objective
File 1

Compiler

Objective
File n

Linker Executable

Program Output

#include <stdio.h>

int main(void)
{

printf(“from sea to shining C\n”);
return 0;

}

Source file:
sea.c

from sea to shining C

Program Output

#include <stdio.h>

¨ Preprocessor
¤ built into the C compiler
¤ Lines beginning with #: communicate with the preprocessor

¨ #include
¤ Preprocessor includes a copy of the header file stdio.h
¤ stdio.h

n provided by the C system
n Declaration of standard input/output functions, e.g., printf()

Program Output

int main(void)
¨ The 1st line of the function definition for main ()
¨ int, void

¤ keywords, or reserved words
¤ Special meanings to the compiler

int main(void)
{
¨ Every program has a function named main()
¨ void, no argument / return an int value
¨ { … }, the body of a function definition

Program Output

printf()
¨ A function that prints on the screen
¨ information in the header file stdio.h

“from sea to shinning C\n”
¨ “… “: string constant in C
¨ \n: a single character called newline

printf(“from sea to shinning C\n”);
¨ statement: end with a semicolon

Program Output

return 0;
¨ A return statement
¨ causes the value zero to be returned to the operating system

}
¨ The right brace matches the left brace
¨ ending the function definition for main()

Compiling

¨ Convert source file to objective file
¤ sea.c to sea.o (or sea.obj)

¨ Object file
¤ a file with expressions that computers can

understand
¨ When compiling fails?

¤ something wrong with source file ...
n expressions with wrong C grammar

Errors in Source File (ex)

-returm 0;
incorrect C language grammar

-compiler fails to make an obj
file and returns an error.

-debugging
change “returm 0;” to

“return 0;”

#include <stdio.h>

int main(void)
{

printf(“from sea to shining C\n”);
returm 0;

}

Errors in Source File (ex)

Linking and Running a Program

¨ Linking
¤ The process to make an executable program

out of objective file(s)
n sea.o (or sea.obj) à a.out (sea.exe)

¨ Run a program
¤ type “a.out” or “sea”

n computer prints “from see to shining C”

Program Output
#include <stdio.h>

int main(void)
{

printf(“from sea to “);
printf(“shining C“);
printf(“\n“);
return 0;

}

#include <stdio.h>

int main(void)
{

printf(“from sea\n“);
printf(“to shining\nC\n“);
return 0;

}

from sea to shining C from sea
to shining
C

Variable, Expressions, &Assignment

/*the distance of a marathon in kilometers*/
#include <stdio.h>
int main(void)
{

int miles, yards;
float kilometers;

miles = 26;
yards = 385;
kilometers = 1.609 * (miles + yards / 1760.0);
printf(“\nA marathon is %f kilometers.\n\n”,

kilometers);
return 0;

}

Marathon:
26 miles 385 yards

miles to kilos:
X 1.609

yards to miles:
÷ 1760.0

Variable, Expressions & Assignment

/*the distance of a marathon in kilometers*/

¨ /* … */
¤ comment
¤ ignored by the compiler

Variable, Expressions & Assignment

int miles, yards;
¨ declaration of the variables miles and yards of type

integer (int)
¨ Declarations and statements end with a semicolon

float kilometers;
¨ float

¤ a keyword, real value
¨ declaration of the variable kilometers of type float

Variable, Expressions & Assignment

miles = 26;
yards = 385;
¨ Assignment statement
¨ =: assignment operator

kilometers = 1.609 * (miles + yards / 1760.0);
¨ Assignment statement
¨ The value of the expression on the right side of the equal sign

is assigned to the variable kilometers

Variable, Expressions & Assignment

printf(“\nA marathon is %f kilometers.\n\n”, kilometers);
¨ Control string
¨ %f: format, conversion specification

¤ Matched with the remaining argument, the variable kilometers

Variable, Expressions & Assignment

/*the distance of a marathon in kilometers*/
#include <stdio.h>
int main(void)
{

int miles, yards;
float kilometers;

miles = 26;
yards = 385;
kilometers = 1.609 * (miles + yards / 1760.0);
printf(“\nA marathon is %f kilometers.\n\n”, kilometers);
return 0;

}

A marathon is 42.195970 kilometers.

Variable, Expressions & Assignment

1.609, 1760.0
¨ A decimal point

¤ indicates that a floating-point constant rather than an integer constant
¨ Three floating types: float, double, long double
¨ floating-point constants are automatically of type

double

Variable, Expressions & Assignment

Expression
¨ On the right side of assignment operators
¨ constants , variables, or

combinations of operators with variables and constants
e.g) yards = 385;

kilometers = 1.609 * (miles + yards / 1760.0);

Evaluation of Expression
¨ Conversion rule

¤ Division of two integers results in an integer values. 7/2 is 3
¤ A double divided by an integer

n Integer is automatically converted to double
n 7.0/2 is 3.5

kilometers = 1.609 * (miles + yards / 1760); bug!!!

Flow of Control

#include <stdio.h>
int main(void)
{

int a, b;
……
a = 1;
if (b == 3)

a = 5;
printf(“%d”, a);
return 0;

}

Alternative actions

Flow of Control

if (expr)
statement

¨ If expr is nonzero(true), then statement is executed;
¨ otherwise, it is skipped

if (b==3)
a = 5;

¨ == : equal to operator
¨ b==3

¤ logical expression : either the integer value 1 (true) or 0 (false)

Flow of Control

#include <stdio.h>
int main(void)
{

int a, b;
b = 3;
a = 1;
if (b == 3)

a = 5;
printf(“%d”, a);
return 0;

}

5

#include <stdio.h>
int main(void)
{

int a, b;
b = 2;
a = 1;
if (b == 3)

a = 5;
printf(“%d”, a);
return 0;

}

1

Flow of Control

if (a == 3)
{

b = 5;
c = 7;

}

Compound statement
¨ A group of statement surrounded by braces
¨ a statement, itself

Flow of Control

if (expr)
statement1

else
statement2

if (cnt == 0)
{

a = 2;
b = 3;
c = 5;

}
else
{

a = -2;
b = -3;
c = -5;

}

Flow of Control

#include <stdio.h>
int main(void)
{

int i = 1, sum = 0;

while (i <= 5)
{

sum = sum + i;
++i;

}
printf(“sum = %d\n”, sum);
return 0;

}

Looping mechanism

Flow of Control
while (i <= 5) while (expr)
{ statement

sum = sum + i;
++i;

}
¨ If expr is true, the compound statement is executed,
¨ and control is passed back to the beginning of the while loop for the

process to start over again
¨ The while loop is repeatedly executed until the test fails

++i;
¨ ++ : increment operator
¨ i = i + 1;

Flow of Control

#include <stdio.h>
int main(void)
{

int i = 1, sum = 0;

while (i <= 5)
{

sum = sum + i;
++i;

}
printf(“sum = %d\n”, sum);
return 0;

}

1+2+3+4+5

sum = 15

C Program is …
¨ A sequence of FUNCTIONS

¤ main() function executed first

¨ A FUNCTION consists of:
¤ Declarations
¤ Statements

¨ Declaration: variable names and their types
¤ int miles;

¨ Statement: data processing or control
¤ miles = 26;
¤ if (b == 3) { …};
¤ printf(…);

