Chapter 8

Matrix–vector Multiplication
Chapter Objectives

• Review matrix–vector multiplication
• Propose replication of vectors
• Develop three parallel programs, each based on a different data decomposition
Outline

• Sequential algorithm and its complexity
• Design, analysis, and implementation of three parallel programs
 – Rowwise block striped
 – Columnwise block striped
 – Checkerboard block
Sequential Algorithm

\[
\begin{array}{cccc}
2 & 1 & 0 & 4 \\
3 & 2 & 1 & 1 \\
4 & 3 & 1 & 2 \\
3 & 0 & 2 & 0 \\
\end{array}
\times
\begin{array}{c}
1 \\
3 \\
4 \\
1 \\
\end{array}
=
\begin{array}{c}
9 \\
14 \\
19 \\
11 \\
\end{array}
\]
Storing Vectors

• Divide vector elements among processes
• Replicate vector elements
• Vector replication acceptable because vectors have only n elements, versus n^2 elements in matrices
Rowwise Block Striped Matrix

- Partitioning through domain decomposition
- Primitive task associated with
 - Row of matrix
 - Entire vector
Phases of Parallel Algorithm

Inner product computation

All-gather communication

Row i of A

Row i of A

Row i of A
Agglomeration and Mapping

• Static number of tasks
• Regular communication pattern (all-gather)
• Computation time per task is constant
• Strategy:
 – Agglomerate groups of rows
 – Create one task per MPI process
Complexity Analysis

- Sequential algorithm complexity: $\Theta(n^2)$
- Parallel algorithm computational complexity: $\Theta(n^2/p)$
- Communication complexity of all-gather: $\Theta(\log p + n)$
- Overall complexity: $\Theta(n^2/p + \log p)$
Isoefficiency Analysis

• Sequential time complexity: $\Theta(n^2)$
• Only parallel overhead is all-gather
 – When n is large, message transmission time dominates message latency
 – Parallel communication time: $\Theta(n)$
• $n^2 \geq Cpn \Rightarrow n \geq Cp$ and $M(n) = n^2$

$$M(Cp) / p = C^2 p^2 / p = C^2 p$$

• System is not highly scalable
Block-to-replicated Transformation
MPI_Allgatherv

Before

0
1
2
3

Processes

After

Allgatherv
int MPI_Allgatherv (
 void *send_buffer,
 int send_cnt,
 MPI_Datatype send_type,
 void *receive_buffer,
 int *receive_cnt,
 int *receive_disp,
 MPI_Datatype receive_type,
 MPI_Comm communicator)
MPI_Allgatherv in Action

Process 0

send_buffer
con
send_cnt=3
receive_cnt
receive_disp
3 4 4 0 3 7

Process 1

send_buffer
cate
send_cnt=4
receive_cnt
receive_disp
3 4 4 0 3 7

Process 2

send_buffer
nate
send_cnt=4
receive_cnt
receive_disp
3 4 4 0 3 7

Process 0

receive_buffer
catenate

Process 1

receive_buffer
catenate

Process 2

receive_buffer
catenate
Function
create_mixed_xfer_arrays

• First array
 – How many elements contributed by each process
 – Uses utility macro BLOCK_SIZE

• Second array
 – Starting position of each process’ block
 – Assume blocks in process rank order
Function
replicate_block_vector

- Create space for entire vector
- Create “mixed transfer” arrays
- Call `MPI_Allgatherv`
Function
read_replicated_vector

• Process $p-1$
 – Opens file
 – Reads vector length
• Broadcast vector length (root process = $p-1$)
• Allocate space for vector
• Process $p-1$ reads vector, closes file
• Broadcast vector
Function
print_replicated_vector

• Process 0 prints vector
• Exact call to `printf` depends on value of parameter `datatype`
Run-time Expression

- χ: inner product loop iteration time
- Computational time: $\chi \cdot n/p$
- All-gather requires $\lceil \log p \rceil$ messages with latency λ
- Total vector elements transmitted: $(2^{\lceil \log p \rceil} - 1) / 2^{\lceil \log p \rceil}$
- Total execution time: $\chi \cdot n/p + \lambda \cdot \lceil \log p \rceil + (2^{\lceil \log p \rceil} - 1) / (2^{\lceil \log p \rceil} \cdot \beta)$
Benchmarking Results

<table>
<thead>
<tr>
<th>p</th>
<th>Predicted</th>
<th>Actual</th>
<th>Speedup</th>
<th>Mflops</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>63.4</td>
<td>63.4</td>
<td>1.00</td>
<td>31.6</td>
</tr>
<tr>
<td>2</td>
<td>32.4</td>
<td>32.7</td>
<td>1.94</td>
<td>61.2</td>
</tr>
<tr>
<td>3</td>
<td>22.3</td>
<td>22.7</td>
<td>2.79</td>
<td>88.1</td>
</tr>
<tr>
<td>4</td>
<td>17.0</td>
<td>17.8</td>
<td>3.56</td>
<td>112.4</td>
</tr>
<tr>
<td>5</td>
<td>14.1</td>
<td>15.2</td>
<td>4.16</td>
<td>131.6</td>
</tr>
<tr>
<td>6</td>
<td>12.0</td>
<td>13.3</td>
<td>4.76</td>
<td>150.4</td>
</tr>
<tr>
<td>7</td>
<td>10.5</td>
<td>12.2</td>
<td>5.19</td>
<td>163.9</td>
</tr>
<tr>
<td>8</td>
<td>9.4</td>
<td>11.1</td>
<td>5.70</td>
<td>180.2</td>
</tr>
<tr>
<td>16</td>
<td>5.7</td>
<td>7.2</td>
<td>8.79</td>
<td>277.8</td>
</tr>
</tbody>
</table>
Columnwise Block Striped Matrix

- Partitioning through domain decomposition
- Task associated with
 - Column of matrix
 - Vector element
Matrix–Vector Multiplication

\[
\begin{align*}
 c_0 &= a_{0,0} b_0 + a_{0,1} b_1 + a_{0,2} b_2 + a_{0,3} b_3 + a_{0,4} b_4 \\
 c_1 &= a_{1,0} b_0 + a_{1,1} b_1 + a_{1,2} b_2 + a_{1,3} b_3 + a_{1,4} b_4 \\
 c_2 &= a_{2,0} b_0 + a_{2,1} b_1 + a_{2,2} b_2 + a_{2,3} b_3 + a_{2,4} b_4 \\
 c_3 &= a_{3,0} b_0 + a_{3,1} b_1 + a_{3,2} b_2 + a_{3,3} b_3 + a_{3,4} b_4 \\
 c_4 &= a_{4,0} b_0 + a_{4,1} b_1 + a_{4,2} b_2 + a_{4,3} b_3 + a_{4,4} b_4
\end{align*}
\]
All-to-all Exchange (Before)
All-to-all Exchange (After)
Phases of Parallel Algorithm

1. **Multiplications**
 - Column i of A with b and $\sim c$.

2. **All-to-all exchange**
 - Transition between phases.

3. **Reduction**
 - Combine information for further processing.
Agglomeration and Mapping

- Static number of tasks
- Regular communication pattern (all-to-all)
- Computation time per task is constant
- Strategy:
 - Agglomerate groups of columns
 - Create one task per MPI process
Complexity Analysis

• Sequential algorithm complexity: $\Theta(n^2)$
• Parallel algorithm computational complexity: $\Theta(n^2/p)$
• Communication complexity of all-to-all: $\Theta(p + n/p)$
• Overall complexity: $\Theta(n^2/p + \log p)$
Isoefficiency Analysis

• Sequential time complexity: $\Theta(n^2)$

• Only parallel overhead is all-to-all
 – When n is large, message transmission time dominates message latency
 – Parallel communication time: $\Theta(n)$

• $n^2 \geq Cpn \Rightarrow n \geq Cp$

• Scalability function same as rowwise algorithm: $C^2 \rho$
Reading a Block-Column Matrix
MPI_Scatterv

Before

0

1

2

3

After

Scatterv
int MPI_Scatterv (
 void *send_buffer,
 int *send_cnt,
 int *send_disp,
 MPI_Datatype send_type,
 void *receive_buffer,
 int receive_cnt,
 MPI_Datatype receive_type,
 int root,
 MPI_Comm communicator)
Printing a Block–Column Matrix

- Data motion opposite to that we did when reading the matrix
- Replace “scatter” with “gather”
- Use “v” variant because different processes contribute different numbers of elements
Function MPI_Gatherv

Before

0

1

2

3

After

Gatherv
int MPI_Gatherv (
 void *send_buffer,
 int send_cnt,
 MPI_Datatype send_type,
 void *receive_buffer,
 int *receive_cnt, int *receive_disp,
 MPI_Datatype receive_type,
 int root,
 MPI_Comm communicator)
Function MPI_Alltoallv
Header for MPI_Alltoallv

```c
int MPI_Gatherv (  
    void         *send_buffer,  
    int         *send_cnt,  
    int         *send_disp,  
    MPI_Datatype send_type,  
    void         *receive_buffer,  
    int         *receive_cnt,  
    int         *receive_disp,  
    MPI_Datatype receive_type,  
    MPI_Comm     communicator)
```
Count/Displacement Arrays

- **MPI_Alltoallv** requires two pairs of count/displacement arrays.
 - **First pair for values being sent**
 - `send_cnt`: number of elements
 - `send_disp`: index of first element
 - **Second pair for values being received**
 - `recv_cnt`: number of elements
 - `recv_disp`: index of first element

`create_mixed_xfer_arrays` builds these.
Function create_uniform_xfer_arrays

- **First array**
 - How many elements received from each process (always same value)
 - Uses ID and utility macro block_size
- **Second array**
 - Starting position of each process’ block
 - Assume blocks in process rank order
Run-time Expression

- χ: inner product loop iteration time
- Computational time: $\chi \cdot n^{\lceil n/p \rceil}$
- All-gather requires $p-1$ messages, each of length about n/p
- 8 bytes per element
- Total execution time:
 $\chi \cdot n^{\lceil n/p \rceil} + (p-1)(\lambda + (8n/p)/\beta)$
Benchmarking Results

<table>
<thead>
<tr>
<th>p</th>
<th>Predicted</th>
<th>Actual</th>
<th>Speedup</th>
<th>Mflops</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>63.4</td>
<td>63.8</td>
<td>1.06</td>
<td>31.4</td>
</tr>
<tr>
<td>2</td>
<td>32.4</td>
<td>32.9</td>
<td>1.92</td>
<td>60.8</td>
</tr>
<tr>
<td>3</td>
<td>22.2</td>
<td>22.6</td>
<td>2.80</td>
<td>88.5</td>
</tr>
<tr>
<td>4</td>
<td>17.2</td>
<td>17.5</td>
<td>3.62</td>
<td>114.3</td>
</tr>
<tr>
<td>5</td>
<td>14.3</td>
<td>14.5</td>
<td>4.37</td>
<td>137.9</td>
</tr>
<tr>
<td>6</td>
<td>12.5</td>
<td>12.6</td>
<td>5.02</td>
<td>158.7</td>
</tr>
<tr>
<td>7</td>
<td>11.3</td>
<td>11.2</td>
<td>5.65</td>
<td>178.6</td>
</tr>
<tr>
<td>8</td>
<td>10.4</td>
<td>10.0</td>
<td>6.33</td>
<td>200.0</td>
</tr>
<tr>
<td>16</td>
<td>8.5</td>
<td>7.6</td>
<td>8.33</td>
<td>263.2</td>
</tr>
</tbody>
</table>
Checkerboard Block Decomposition

- Associate primitive task with each element of the matrix A
- Each primitive task performs one multiply
- Agglomerate primitive tasks into rectangular blocks
- Processes form a 2-D grid
- Vector b distributed by blocks among processes in first column of grid
Tasks after Agglomeration
Algorithm’s Phases

Redistribute b

Matrix-vector multiply

Reduce vectors across rows
Redistributing Vector \mathbf{b}

- **Step 1**: Move \mathbf{b} from processes in first row to processes in first column
 - If p square
 - First column/first row processes send/receive portions of \mathbf{b}
 - If p not square
 - Gather \mathbf{b} on process 0, 0
 - Process 0, 0 broadcasts to first row procs

- **Step 2**: First row processes scatter \mathbf{b} within columns
Redistributing Vector b

When p is a square number

When p is not a square number
Complexity Analysis

• Assume \(\rho \) is a square number
 – If grid is \(1 \times \rho \), devolves into columnwise block striped
 – If grid is \(\rho \times 1 \), devolves into rowwise block striped
Complexity Analysis (continued)

• Each process does its share of computation: $\Theta(n^2/p)$

• Redistribute b: $\Theta(n / \sqrt{p} + \log p(n / \sqrt{p})) = \Theta(n \log p / \sqrt{p})$

• Reduction of partial results vectors: $\Theta(n \log p / \sqrt{p})$

• Overall parallel complexity: $\Theta(n^3/p + n \log p / \sqrt{p})$
Isoefficiency Analysis

- Sequential complexity: $\Theta(n^2)$
- Parallel communication complexity: $\Theta(n \log p / \sqrt{p})$
- Isoefficiency function:
 \[
 n^2 \geq Cn \sqrt{p \log p} \Rightarrow n \geq C \sqrt{p \log p}
 \]

\[
M(C\sqrt{p \log p})/p = C^2 p \log^2 p / p = C^2 \log^2 p
\]

- This system is much more scalable than the previous two implementations
Creating Communicators

- Want processes in a virtual 2-D grid
- Create a custom communicator to do this
- Collective communications involve all processes in a communicator
- We need to do broadcasts, reductions among subsets of processes
- We will create communicators for processes in same row or same column
What’s in a Communicator?

• Process group
• Context
• Attributes
 – Topology (lets us address processes another way)
 – Others we won’t consider
Creating 2-D Virtual Grid of Processes

• MPI_Dims_create
 – Input parameters
 • Total number of processes in desired grid
 • Number of grid dimensions
 – Returns number of processes in each dim

• MPI_Cart_create
 – Creates communicator with cartesian topology
MPI_Dims_create

int MPI_Dims_create (
 int nodes,
 /* Input - Procs in grid */
 int dims,
 /* Input - Number of dims */
 int *size)
 /* Input/Output - Size of each grid dimension */
MPI_Cart_create

int MPI_Cart_create (
 MPI_Comm old_comm, /* Input - old communicator */
 int dims, /* Input - grid dimensions */
 int *size, /* Input - # procs in each dim */
 int *periodic,
 /* Input - periodic[j] is 1 if dimension j wraps around; 0 otherwise */
 int reorder,
 /* 1 if process ranks can be reordered */
 MPI_Comm *cart_comm)
 /* Output - new communicator */
Using MPI_Dims_create and MPI_Cart_create

```c
MPI_Comm cart_comm;
int p;
int periodic[2];
int size[2];
...
size[0] = size[1] = 0;
MPI_Dims_create (p, 2, size);
periodic[0] = periodic[1] = 0;
MPI_Cart_create (MPI_COMM_WORLD, 2, size,
                1, &cart_comm);
```
Useful Grid-related Functions

• MPI_Cart_rank
 – Given coordinates of process in Cartesian communicator, returns process rank

• MPI_Cart_coords
 – Given rank of process in Cartesian communicator, returns process’ coordinates
Header for MPI_Cart_rank

```c
int MPI_Cart_rank (  
    MPI_Comm comm,  
    /* In - Communicator */  
    int *coords,  
    /* In - Array containing process'  
      grid location */  
    int *rank)  
    /* Out - Rank of process at  
      specified coords */
```
int MPI_Cart_coords (
 MPI_Comm comm,
 /* In - Communicator */
 int rank,
 /* In - Rank of process */
 int dims,
 /* In - Dimensions in virtual grid */
 int *coords)
 /* Out - Coordinates of specified
 process in virtual grid */
MPI_Comm_split

- Partitions the processes of a communicator into one or more subgroups
- Constructs a communicator for each subgroup
- Allows processes in each subgroup to perform their own collective communications
- Needed for columnwise scatter and rowwise reduce
int MPI_Comm_split (
 MPI_Comm old_comm,
 /* In - Existing communicator */
 int partition, /* In - Partition number */
 int new_rank,
 /* In - Ranking order of processes
 in new communicator */
 MPI_Comm *new_comm)
 /* Out - New communicator shared by
 processes in same partition */
Example: Create Communicators for Process Rows

MPI_Comm grid_comm; /* 2-D process grid */

MPI_Comm grid_coords[2];
 /* Location of process in grid */

MPI_Comm row_comm;
 /* Processes in same row */

MPI_Comm_split (grid_comm, grid_coords[0],
 grid_coords[1], &row_comm);
Run-time Expression

- Computational time: $\chi \left\lceil \frac{n}{\sqrt{\rho}} \right\rceil \left\lfloor \frac{n}{\sqrt{\rho}} \right\rfloor$
- Suppose ρ a square number
- Redistribute b
 - Send/recv: $\lambda + 8 \left\lfloor \frac{n}{\sqrt{\rho}} \right\rfloor / \beta$
 - Broadcast: $\log \sqrt{\rho} \left(\lambda + 8 \left\lfloor \frac{n}{\sqrt{\rho}} \right\rfloor / \beta \right)$
- Reduce partial results:
 $\log \sqrt{\rho} \left(\lambda + 8 \left\lfloor \frac{n}{\sqrt{\rho}} \right\rfloor / \beta \right)$
Benchmarking

<table>
<thead>
<tr>
<th>Procs</th>
<th>Predicted (msec)</th>
<th>Actual (msec)</th>
<th>Speedup</th>
<th>Megaflops</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>63.4</td>
<td>63.4</td>
<td>1.00</td>
<td>31.6</td>
</tr>
<tr>
<td>4</td>
<td>17.8</td>
<td>17.4</td>
<td>3.64</td>
<td>114.9</td>
</tr>
<tr>
<td>9</td>
<td>9.7</td>
<td>9.7</td>
<td>6.53</td>
<td>206.2</td>
</tr>
<tr>
<td>16</td>
<td>6.2</td>
<td>6.2</td>
<td>10.21</td>
<td>322.6</td>
</tr>
</tbody>
</table>
Comparison of Three Algorithms

![Graph showing comparison of three algorithms: Rowwise Block Striped, Columnwise Block Striped, and Checkerboard Block.](image)
Summary (1/3)

• Matrix decomposition ⇒ communications needed
 – Rowwise block striped: all-gather
 – Columnwise block striped: all-to-all exchange
 – Checkerboard block: gather, scatter, broadcast, reduce
• All three algorithms: roughly same number of messages
• Elements transmitted per process varies
 – First two algorithms: $\Theta(n)$ elements per process
 – Checkerboard algorithm: $\Theta(n/\sqrt{p})$ elements
• Checkerboard block algorithm has better scalability
Summary (2/3)

• Communicators with Cartesian topology
 – Creation
 – Identifying processes by rank or coords

• Subdividing communicators
 – Allows collective operations among subsets of processes
Summary (3/3)

- Parallel programs and supporting functions much longer than C counterparts
- Extra code devoted to reading, distributing, printing matrices and vectors
- Developing and debugging these functions is tedious and difficult
- Makes sense to generalize functions and put them in libraries for reuse
MPI Application Development

Application

Application-specific Library

MPI Library

C and Standard Libraries