Parallel Programming
in C with MPI and OpenMP

Michael J. Quinn
Chapter 5

The Sieve of Eratosthenes
Chapter Objectives

• Analysis of block allocation schemes
• Function MPI_Bcast
• Performance enhancements
Outline

• Sequential algorithm
• Sources of parallelism
• Data decomposition options
• Parallel algorithm development, analysis
• MPI program
• Benchmarking
• Optimizations
Sequential Algorithm

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
<td>61</td>
<td></td>
</tr>
</tbody>
</table>

Complexity: $\Theta(n \ln \ln n)$
Pseudocode

1. Create list of unmarked natural numbers 2, 3, …, n
2. \(k \leftarrow 2 \)
3. Repeat
 (a) Mark all multiples of \(k \) between \(k^2 \) and \(n \)
 (b) \(k \leftarrow \) smallest unmarked number > \(k \)
 until \(k^2 > n \)
4. The unmarked numbers are primes
Sources of Parallelism

• Domain decomposition
 – Divide data into pieces
 – Associate computational steps with data

• One primitive task per array element
Making 3(a) Parallel

Mark all multiples of k between k^2 and n

\Rightarrow

for all j where $k^2 \leq j \leq n$ do
 if $j \mod k = 0$ then
 mark j (it is not a prime)
 endif
endfor
Making 3(b) Parallel

Find smallest unmarked number $> k$

\Rightarrow

Min-reduction (to find smallest unmarked number $> k$)

Broadcast (to get result to all tasks)
Agglomeration Goals

- Consolidate tasks
- Reduce communication cost
- Balance computations among processes
Data Decomposition Options

• Interleaved (cyclic)
 – Easy to determine “owner” of each index
 – Leads to load imbalance for this problem

• Block
 – Balances loads
 – More complicated to determine owner if n not a multiple of p
Block Decomposition Options

• Want to balance workload when n not a multiple of p
• Each process gets either $\lfloor n/p \rfloor$ or $\lceil n/p \rceil$ elements
• Seek simple expressions
 – Find low, high indices given an owner
 – Find owner given an index
Method #1

• Let \(r = n \mod \rho \)
• If \(r = 0 \), all blocks have same size
• Else
 – First \(r \) blocks have size \(\lceil n/\rho \rceil \)
 – Remaining \(\rho - r \) blocks have size \(\lfloor n/\rho \rfloor \)
Examples

17 elements divided among 7 processes

17 elements divided among 5 processes

17 elements divided among 3 processes
Method #1 Calculations

• First element controlled by process i

$$i|n/p| + \min(i, r)$$

• Last element controlled by process i

$$\lfloor (i+1)n/p \rfloor + \min(i+1, r) - 1$$

• Process controlling element j

$$\min(\lfloor j/(\lfloor n/p \rfloor + 1) \rfloor, \lfloor (j-r)/\lfloor n/p \rfloor \rfloor)$$
Method #2

- Scatters larger blocks among processes
- First element controlled by process \(i \)
 \[
 \left\lfloor \frac{in}{p} \right\rfloor
 \]
- Last element controlled by process \(i \)
 \[
 \left\lfloor \frac{(i+1)n}{p} \right\rfloor - 1
 \]
- Process controlling element \(j \)
 \[
 \left\lfloor \frac{p(j+1)-1}{n} \right\rfloor
 \]
Examples

17 elements divided among 7 processes

17 elements divided among 5 processes

17 elements divided among 3 processes
Comparing Methods

<table>
<thead>
<tr>
<th>Operations</th>
<th>Method 1</th>
<th>Method 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low index</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>High index</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Owner</td>
<td>7</td>
<td>4</td>
</tr>
</tbody>
</table>

Assuming no operations for “floor” function

Our choice
Pop Quiz

• Illustrate how block decomposition method #2 would divide 13 elements among 5 processes.

\[
\begin{align*}
13(0)/5 &= 0 & 13(2)/5 &= 5 & 13(4)/5 &= 10 \\
13(1)/5 &= 2 & 13(3)/5 &= 7
\end{align*}
\]
Block Decomposition Macros

```c
#define BLOCK_LOW(id,p,n)  ((i)*(n)/(p))

#define BLOCK_HIGH(id,p,n) \  
(BLOCK_LOW((id)+1,p,n)-1)

#define BLOCK_SIZE(id,p,n) \  
(BLOCK_LOW((id)+1)-BLOCK_LOW(id))

#define BLOCK_OWNER(index,p,n) \  
(((p)*(index)+1)-1)/(n))
```
Local vs. Global Indices

L 0 1
G 0 1

L 0 1 2
G 2 3 4

L 0 1
G 5 6

L 0 1 2
G 7 8 9

L 0 1 2
G 10 11 12
Looping over Elements

• Sequential program

  ```
  for (i = 0; i < n; i++) {
    ...
  }
  ```

• Parallel program

  ```
  size = BLOCK_SIZE (id, p, n);
  for (i = 0; i < size; i++) {
    gi = i + BLOCK_LOW(id, p, n);
  }
  ```

Index i on this process... takes place of sequential program’s index gi
Decomposition Affects Implementation

- Largest prime used to sieve is \sqrt{n}
- First process has $\left\lfloor \frac{n}{p} \right\rfloor$ elements
- It has all sieving primes if $p < \sqrt{n}$
- First process always broadcasts next sieving prime
- No reduction step needed
Fast Marking

- Block decomposition allows same marking as sequential algorithm:

\[j, \ j + k, \ j + 2k, \ j + 3k, \ldots \]

instead of

for all \(j \) in block

if \(j \mod k = 0 \) then mark \(j \) (it is not a prime)
Parallel Algorithm Development

1. Create list of unmarked natural numbers 2, 3, …, n

2. \(k \leftarrow 2 \) Each process creates its share of list

3. Repeat

 (a) Mark all multiples of \(k \) between \(k^2 \) and \(n \) Each process marks its share of list

 (b) \(k \leftarrow \) smallest unmarked number > \(k \) Process 0 only

 (c) Process 0 broadcasts \(k \) to rest of processes

until \(k^2 > m \)

4. The unmarked numbers are primes

5. Reduction to determine number of primes
Function MPI_Bcast

```c
int MPI_Bcast (
    void *buffer, /* Addr of 1st element */
    int count,    /* # elements to broadcast */
    MPI_Datatype datatype, /* Type of elements */
    int root,     /* ID of root process */
    MPI_Comm comm)  /* Communicator */
```

```c
MPI_Bcast (&k, 1, MPI_INT, 0, MPI_COMM_WORLD);
```
Task/Channel Graph
Analysis

• χ is time needed to mark a cell
• Sequential execution time: $\chi \ n \ln \ln n$
• Number of broadcasts: $\sqrt{n} / \ln \sqrt{n}$
• Broadcast time: $\lambda \lceil \log p \rceil$
• Expected execution time:

$$\chi n \ln \ln n / p + (\sqrt{n} / \ln \sqrt{n}) \lambda \lceil \log p \rceil$$
#include <mpi.h>
#include <math.h>
#include <stdio.h>
#include "MyMPI.h"
#define MIN(a,b) ((a)<(b)?(a):(b))

int main (int argc, char *argv[]) {
 ...
 MPI_Init (&argc, &argv);
 MPI_Barrier(MPI_COMM_WORLD);
 elapsed_time = -MPI_Wtime();
 MPI_Comm_rank (MPI_COMM_WORLD, &id);
 MPI_Comm_size (MPI_COMM_WORLD, &p);
 if (argc != 2) {
 if (!id) printf ("Command line: %s <m>\n", argv[0]);
 MPI_Finalize(); exit (1);
 }
}
n = atoi(argv[1]);
low_value = 2 + BLOCK_LOW(id,p,n-1);
high_value = 2 + BLOCK_HIGH(id,p,n-1);
size = BLOCK_SIZE(id,p,n-1);
proc0_size = (n-1)/p;
if ((2 + proc0_size) < (int) sqrt((double) n)) {
 if (!id) printf ("Too many processes\n");
 MPI_Finalize();
 exit (1);
}

marked = (char *) malloc (size);
if (marked == NULL) {
 printf ("Cannot allocate enough memory\n");
 MPI_Finalize();
 exit (1);
}
for (i = 0; i < size; i++) marked[i] = 0;
if (!id) index = 0;
prime = 2;
do {
 if (prime * prime > low_value)
 first = prime * prime - low_value;
 else {
 if (!(low_value % prime)) first = 0;
 else first = prime - (low_value % prime);
 }
 for (i = first; i < size; i += prime) marked[i] = 1;
 if (!id) {
 while (marked[++index]);
 prime = index + 2;
 }
 MPI_Bcast (&prime, 1, MPI_INT, 0, MPI_COMM_WORLD);
} while (prime * prime <= n);
count = 0;
for (i = 0; i < size; i++)
 if (!marked[i]) count++;
MPI_Reduce (&count, &global_count, 1, MPI_INT, MPI_SUM,
 0, MPI_COMM_WORLD);
elapsed_time += MPI_Wtime();
if (!id) {
 printf("%d primes are less than or equal to %d\n",
 global_count, n);
 printf("Total elapsed time: %10.6f\n", elapsed_time);
}
MPI_Finalize ();
return 0;
Benchmarking

- Execute sequential algorithm
- Determine $\chi = 85.47$ nanosec
- Execute series of broadcasts
- Determine $\lambda = 250 \ \mu\text{sec}$
Execution Times (sec)

<table>
<thead>
<tr>
<th>Processors</th>
<th>Predicted (sec)</th>
<th>Actual (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24.900</td>
<td>24.900</td>
</tr>
<tr>
<td>2</td>
<td>12.721</td>
<td>13.011</td>
</tr>
<tr>
<td>3</td>
<td>8.843</td>
<td>9.039</td>
</tr>
<tr>
<td>4</td>
<td>6.768</td>
<td>7.055</td>
</tr>
<tr>
<td>5</td>
<td>5.794</td>
<td>5.993</td>
</tr>
<tr>
<td>6</td>
<td>4.964</td>
<td>5.159</td>
</tr>
<tr>
<td>7</td>
<td>4.371</td>
<td>4.687</td>
</tr>
<tr>
<td>8</td>
<td>3.927</td>
<td>4.222</td>
</tr>
</tbody>
</table>
Improvements

• Delete even integers
 – Cuts number of computations in half
 – Frees storage for larger values of n

• Each process finds own sieving primes
 – Replicating computation of primes to \sqrt{n}
 – Eliminates broadcast step

• Reorganize loops
 – Increases cache hit rate
Reorganize Loops

Cache hit rate

(a) Lower
(b) Higher
Comparing 4 Versions

<table>
<thead>
<tr>
<th>Procs</th>
<th>Sieve 1</th>
<th>Sieve 2</th>
<th>Sieve 3</th>
<th>Sieve 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24.900</td>
<td>12.237</td>
<td>12.466</td>
<td>2.543</td>
</tr>
<tr>
<td>3</td>
<td>8.843</td>
<td>5.019</td>
<td>4.272</td>
<td>0.901</td>
</tr>
<tr>
<td>4</td>
<td>6.768</td>
<td>4.072</td>
<td>3.884</td>
<td>0.879</td>
</tr>
<tr>
<td>5</td>
<td>5.794</td>
<td>3.652</td>
<td>2.559</td>
<td>0.543</td>
</tr>
<tr>
<td>6</td>
<td>4.964</td>
<td>3.270</td>
<td>2.127</td>
<td>0.456</td>
</tr>
<tr>
<td>7</td>
<td>4.371</td>
<td>3.059</td>
<td>1.820</td>
<td>0.391</td>
</tr>
<tr>
<td>8</td>
<td>3.927</td>
<td>2.856</td>
<td>1.585</td>
<td>0.342</td>
</tr>
</tbody>
</table>

- **10-fold improvement** between Sieve 1 and Sieve 2
- **7-fold improvement** between Sieve 1 and Sieve 3
Summary

• Sieve of Eratosthenes: parallel design uses domain decomposition
• Compared two block distributions
 – Chose one with simpler formulas
• Introduced \texttt{MPI_Bcast}
• Optimizations reveal importance of maximizing single-processor performance