Parallel Programming
in C with MPI and OpenMP

Michael J. Quinn
Chapter 15

The Fast Fourier Transform
Outline

• Fourier analysis
• Discrete Fourier transform
• Fast Fourier transform
• Parallel implementation
Discrete Fourier Transform

- Many applications in science, engineering
- Examples
 - Voice recognition
 - Image processing
- Straightforward implementation: $\Theta(n^2)$
- Fast Fourier transform: $\Theta(n \log n)$
Fourier Analysis

• Fourier analysis: Represent continuous functions by potentially infinite series of sine and cosine functions

• Discrete Fourier transform: Map a sequence over time to another sequence over frequency
 – Signal strength as a function of time ⇒
 – Fourier coefficients as a function of frequency
DFT Example (1/4)

16 data points representing signal strength over time
DFT Example (2/4)

DFT yields amplitudes and frequencies of sine/cosine functions

![Graph showing real and imaginary parts of DFT amplitudes over frequency. The graph has a y-axis labeled 'Amplitude' ranging from -20 to 25, and an x-axis labeled 'Frequency' with values 1, 3, 5, 7, 9, 11. Two lines are present, one representing the real part and the other the imaginary part, with peaks at specific frequencies.](image)
DFT Example (3/4)

Plot of four constituent sine/cosine functions and their sum
DFT Example (4/4)

Continuous function and original 16 samples.
DFT of Speech Sample

“An gorra cats are furrier...”

Figure courtesy Ron Cole and Yeshwant Muthusamy of the Oregon Graduate Institute
Computing DFT

• Matrix–vector product $\mathcal{F}_n x$

 – x is input vector (signal samples)

 – $f_{i,j} = \omega_n^{ij}$ for $0 \leq i, j < n$ and ω_n is primitive nth root of unity
Example 1

- Compute DFT of vector \((2, 3)\)
- \(\omega_2\), the primitive square root of unity, is \(-1\)

\[
\begin{pmatrix}
\omega_2^{0 \times 0} & \omega_2^{0 \times 1} \\
\omega_2^{1 \times 0} & \omega_2^{1 \times 1}
\end{pmatrix}
\begin{pmatrix}
x_0 \\
x_1
\end{pmatrix}
= \begin{pmatrix}
1 & 1 \\
1 & -1
\end{pmatrix}
\begin{pmatrix}
2 \\
3
\end{pmatrix}
= \begin{pmatrix}
5 \\
-1
\end{pmatrix}
\]
Example 2

• Compute DFT of vector (1, 2, 4, 3)
• The primitive 4th root of unity is i

\[
\begin{pmatrix}
\omega_4^0 & \omega_4^0 & \omega_4^0 & \omega_4^0 \\
\omega_4^0 & \omega_4^1 & \omega_4^2 & \omega_4^3 \\
\omega_4^0 & \omega_4^2 & \omega_4^4 & \omega_4^6 \\
\omega_4^0 & \omega_4^3 & \omega_4^6 & \omega_4^9
\end{pmatrix}
\begin{pmatrix}
x_0 \\
x_1 \\
x_2 \\
x_3
\end{pmatrix}
=
\begin{pmatrix}
1 & 1 & 1 & 1 \\
1 & i & -1 & -i \\
1 & -1 & 1 & -1 \\
1 & -i & -1 & i
\end{pmatrix}
\begin{pmatrix}
1 \\
2 \\
4 \\
3
\end{pmatrix}
=
\begin{pmatrix}
10 \\
-3-i \\
0 \\
-3+i
\end{pmatrix}
\]
Fast Fourier Transform

• An $\Theta(n \log n)$ algorithm to perform DFT
• Based on divide-and-conquer strategy
• Suppose we want to compute $f(x)$

$$f(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_{n-1} x^{n-1}$$

• We define two new functions, $f^{[0]}$ and $f^{[1]}$

$$f^{[0]} = a_0 + a_2 x + a_4 x^2 + \ldots + a_{n-2} x^{n/2-1}$$
$$f^{[1]} = a_1 + a_3 x + a_5 x^2 + \ldots + a_{n-1} x^{n/2-1}$$
FFT (continued)

- Note: \(f(x) = f^{[0]}(x^2) + x f^{[1]}(x^2) \)
- Problem of evaluating \(f(x) \) at \(n \) values of \(\omega \) reduces to
 - Evaluating \(f^{[0]}(x) \) and \(f^{[1]}(x) \) at \(n/2 \) values of \(\omega \)
 - Performing \(f^{[0]}(x^2) + x f^{[1]}(x^2) \)
- Leads to recursive algorithm with time complexity \(\Theta(n \log n) \)
Iterative Implementation

Preferable

- Well-written iterative version performs fewer index computations than recursive version
- Iterative version evaluates key common sub-expression only once
- Easier to derive parallel FFT algorithm when sequential algorithm in iterative form
Recursive ⇒ Iterative (1/3)

Recursive implementation of FFT

```
fft(1,2,4,3)
fft(1)
fft(4)
fft(2)
fft(3)
```

```
(10, -3-i, 0, -3+i)
(5, -3)
(1)
fft(1,4)
fft(1)
fft(4)
(4)
(2)
fft(2,3)
fft(2)
fft(3)
(3)
```

```
(5, -1)
```
Recursive \Rightarrow Iterative (2/3)

Determining which computations are performed for each function invocation

```
5+1(5)   -3+i(-1)   5-1(5)   -3-i(-1)
```

```
1+1(4)   1-1(4)
```

```
1   4
```

```
2+1(3)   2-1(3)
```

```
2   3
```
Recursive ⇒ Iterative (3/3)

Tracking the flow of data values (input vector at bottom)
Parallel Program Design

• Domain decomposition
 – Associate primitive task with each element of input vector a and corresponding element of output vector y

• Add channels to handle communications between tasks
FFT Task/Channel Graph
Agglomeration and Mapping

- Agglomerate primitive tasks associated with contiguous elements of vector
- Map one agglomerated task to each process
After Agglomeration, Mapping
Phases of Parallel FFT Algorithm

• Phase 1: Processes permute a’s (all-to-all communication)

• Phase 2:
 – First $\log n$ – $\log \rho$ iterations of FFT
 – No message passing is required

• Phase 3:
 – Final $\log \rho$ iterations
 – Processes organized as logical hypercube
 – In each iteration every process swaps values with partner across a hypercube dimension
Complexity Analysis

• Each process performs equal share of computation: $\Theta(n \log n / p)$
• All-to-all communication: $\Theta(n \log p / p)$
• Sub-vector swaps during last $\log p$ iterations: $\Theta(n \log p / p)$
Isoefficiency Analysis

- Sequential time complexity: $\Theta(n \log n)$
- Parallel overhead: $\Theta(n \log p)$
- Isoefficiency relation:
 \[
 n \log n \geq C \cdot n \log p \Rightarrow \log n \geq C \cdot \log p \Rightarrow n \geq p^C
 \]

\[
M(p^C) / p = p^C / p = p^{C-1}
\]

- Scalability depends on C, a function of the ratio between computing speed and communication speed.
Summary

• Discrete Fourier transform used in many scientific and engineering applications
• Fast Fourier transform important because it implements DFT in time $\Theta(n \log n)$
• Developed parallel implementation of FFT
• Why isn’t scalability better?
 – $\Theta(n \log n)$ sequential algorithm
 – Parallel version requires all-to-all data exchange