Parallel Programming
in C with MPI and OpenMP

Michael J. Quinn
Chapter 10

Monte Carlo Methods
Chapter Objectives

• Introduce Monte Carlo methods
• Introduce techniques for parallel random number generation
Outline

• Monte Carlo method
• Sequential random number generators
• Parallel random number generators
• Generating non–uniform random numbers
• Monte Carlo case studies
Monte Carlo Method

• Solve a problem using statistical sampling
• Name comes from Monaco’s gambling resort city
• First important use in development of atomic bomb during World War II
Applications of Monte Carlo Method

- Evaluating integrals of arbitrary functions of 6+ dimensions
- Predicting future values of stocks
- Solving partial differential equations
- Sharpening satellite images
- Modeling cell populations
- Finding approximate solutions to NP-hard problems
Example of Monte Carlo Method

\[
\frac{\text{Circle}}{\text{Square}} = \frac{\pi D^2 / 4}{D^2 / 4} = \frac{\pi}{4}
\]
Example of Monte Carlo Method

\[
\frac{16}{20} \approx \frac{\pi}{4} \Rightarrow \pi \approx 3.2
\]
Absolute Error

• Absolute error is a way to measure the quality of an estimate
• The smaller the error, the better the estimate
• a: actual value
• e: estimated value
• Absolute error = $|e-a|/a$
Increasing Sample Size Reduces Error

<table>
<thead>
<tr>
<th>n</th>
<th>Estimate</th>
<th>Error</th>
<th>$1/(2n^{1/2})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>2.40000</td>
<td>0.23606</td>
<td>0.15811</td>
</tr>
<tr>
<td>100</td>
<td>3.36000</td>
<td>0.06952</td>
<td>0.05000</td>
</tr>
<tr>
<td>1,000</td>
<td>3.14400</td>
<td>0.00077</td>
<td>0.01581</td>
</tr>
<tr>
<td>10,000</td>
<td>3.13920</td>
<td>0.00076</td>
<td>0.00500</td>
</tr>
<tr>
<td>100,000</td>
<td>3.14132</td>
<td>0.00009</td>
<td>0.00158</td>
</tr>
<tr>
<td>1,000,000</td>
<td>3.14006</td>
<td>0.00049</td>
<td>0.00050</td>
</tr>
<tr>
<td>10,000,000</td>
<td>3.14136</td>
<td>0.00007</td>
<td>0.00016</td>
</tr>
<tr>
<td>100,000,000</td>
<td>3.14154</td>
<td>0.00002</td>
<td>0.00005</td>
</tr>
<tr>
<td>1,000,000,000</td>
<td>3.14155</td>
<td>0.00001</td>
<td>0.00002</td>
</tr>
</tbody>
</table>
Mean Value Theorem

\[\int_{a}^{b} f(x) \, dx = (b - a) \bar{f} \]
Estimating Mean Value

The expected value of \((1/n)(f(x_0) + \ldots + f(x_{n-1}))\) is \(\bar{f}\)
Why Monte Carlo Works

\[\int_{a}^{b} f(x) \, dx = (b - a) \bar{f} \approx (b - a) \frac{1}{n} \sum_{i=0}^{n-1} f(x_i) \]
Why Monte Carlo is Effective

• Error in Monte Carlo estimate decreases by the factor $1/n^{1/2}$
• Rate of convergence independent of integrand’s dimension
• Deterministic numerical integration methods do not share this property
• Hence Monte Carlo superior when integrand has 6 or more dimensions
Parallelism in Monte Carlo Methods

- Monte Carlo methods often amenable to parallelism
- Find an estimate about p times faster
- Reduce error of estimate by $p^{1/2}$
Random versus Pseudo-random

- Virtually all computers have “random number” generators
- Their operation is deterministic
- Sequences are predictable
- More accurately called “pseudo-random number” generators
- In this chapter “random” is shorthand for “pseudo-random”
- “RNG” means “random number generator”
Properties of an Ideal RNG

- Uniformly distributed
- Uncorrelated
- Never cycles
- Satisfies any statistical test for randomness
- Reproducible
- Machine-independent
- Changing “seed” value changes sequence
- Easily split into independent subsequences
- Fast
- Limited memory requirements
No RNG Is Ideal

• Finite precision arithmetic ⇒ finite number of states ⇒ cycles
 – Period = length of cycle
 – If period > number of values needed, effectively acyclic

• Reproducible ⇒ correlations

• Often speed versus quality trade-offs
Linear Congruential RNGs

\[X_i = (a \times X_{i-1} + c) \mod M \]

Sequence depends on choice of seed, \(X_0 \)
Period of Linear Congruential RNG

- Maximum period is M
- For 32-bit integers maximum period is 2^{32}, or about 4 billion
- This is too small for modern computers
- Use a generator with at least 48 bits of precision
Producing Floating-Point Numbers

- X_i, a, c, and M are all integers
- X_is range in value from 0 to $M-1$
- To produce floating-point numbers in range $[0, 1)$, divide X_i by M
Defects of Linear Congruential RNGs

• Least significant bits correlated
 – Especially when \(M \) is a power of 2

• \(k \)-tuples of random numbers form a lattice
 – Especially pronounced when \(k \) is large
Lagged Fibonacci RNGs

\[X_i = X_{i-p} \times X_{i-q} \]

- \(p \) and \(q \) are lags, \(p > q \)
- * is any binary arithmetic operation
 - Addition modulo \(M \)
 - Subtraction modulo \(M \)
 - Multiplication modulo \(M \)
 - Bitwise exclusive or
Properties of Lagged Fibonacci RNGs

• Require \(p \) seed values
• Careful selection of seed values, \(p \), and \(q \) can result in very long periods and good randomness
• For example, suppose \(M \) has \(b \) bits
• Maximum period for additive lagged Fibonacci RNG is \((2^p - 1)2^{b-1}\)
Ideal Parallel RNGs

- All properties of sequential RNGs
- No correlations among numbers in different sequences
- Scalability
- Locality
Parallel RNG Designs

• Manager–worker
• Leapfrog
• Sequence splitting
• Independent sequences
Manager–Worker Parallel RNG

- Manager process generates random numbers
- Worker processes consume them
- If algorithm is synchronous, may achieve goal of consistency
- Not scalable
- Does not exhibit locality
Leapfrog Method

Process with rank 1 of 4 processes
Properties of Leapfrog Method

- Easy modify linear congruential RNG to support jumping by p
- Can allow parallel program to generate same tuples as sequential program
- Does not support dynamic creation of new random number streams
Sequence Splitting

Process with rank 1 of 4 processes
Properties of Sequence Splitting

- Forces each process to move ahead to its starting point
- Does not support goal of reproducibility
- May run into long-range correlation problems
- Can be modified to support dynamic creation of new sequences
Independent Sequences

• Run sequential RNG on each process
• Start each with different seed(s) or other parameters
• Example: linear congruential RNGs with different additive constants
• Works well with lagged Fibonacci RNGs
• Supports goals of locality and scalability
Other Distributions

- Analytical transformations
- Box–Muller Transformation
- Rejection method
Analytical Transformation
Exponential Distribution

\[
F^{-1}(u) = -m \ln u
\]

\[
F(x) = 1 - e^{-x/m}
\]

\[
f(x) = \frac{1}{m} e^{-x/m}
\]
Example 1:

- Produce four samples from an exponential distribution with mean 3
- Uniform sample: 0.540, 0.619, 0.452, 0.095
- Take natural log of each value and multiply by -3
- Exponential sample: 1.850, 1.440, 2.317, 7.072
Example 2:

- Simulation advances in time steps of 1 second
- Probability of an event happening is from an exponential distribution with mean 5 seconds
- What is probability that event will happen in next second?
 - 1/5
- Use uniform random number to test for occurrence of event
Box–Muller Transformation

• Cannot invert cumulative distribution function to produce formula yielding random numbers from normal (gaussian) distribution

• Box–Muller transformation produces a pair of standard deviates \(g_1 \) and \(g_2 \) from a pair of normal deviates \(u_1 \) and \(u_2 \)
Box–Muller Transformation

repeat
 \(v_1 \leftarrow 2u_1 - 1 \)
 \(v_2 \leftarrow 2u_2 - 1 \)
 \(r \leftarrow v_1^2 + v_2^2 \)
until \(r > 0 \) and \(r < 1 \)
\(f \leftarrow \sqrt{-2 \ln r / r} \)
\(g_1 \leftarrow f v_1 \)
\(g_2 \leftarrow f v_2 \)
Example

• Produce four samples from a normal distribution with mean 0 and standard deviation 1

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>u_1</td>
<td>u_2</td>
<td>v_1</td>
<td>v_2</td>
<td>r</td>
<td>f</td>
<td>g_1</td>
<td>g_2</td>
</tr>
<tr>
<td>0.234</td>
<td>0.784</td>
<td>0.532</td>
<td>0.568</td>
<td>0.605</td>
<td>1.290</td>
<td>0.686</td>
<td>0.732</td>
</tr>
<tr>
<td>0.824</td>
<td>0.039</td>
<td>0.648</td>
<td>0.921</td>
<td>1.269</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.430</td>
<td>0.176</td>
<td>0.140</td>
<td>0.648</td>
<td>0.439</td>
<td>1.935</td>
<td>0.271</td>
<td>1.254</td>
</tr>
</tbody>
</table>
Different Mean, Std. Dev.

\[g_1 \leftarrow s f v_1 + m \]

\[g_2 \leftarrow s f v_2 + m \]
Rejection Method
Example

- Generate random variables from this probability density function

\[
f(x) = \begin{cases}
\sin x, & \text{if } 0 \leq x \leq \pi / 4 \\
(-4x + \pi + 8) / (8\sqrt{2}), & \text{if } \pi/4 < x \leq 2 + \pi / 4 \\
0, & \text{otherwise}
\end{cases}
\]
Example (cont.)

\[
h(x) = \begin{cases}
\frac{1}{2 + \frac{\pi}{4}}, & \text{if } 0 \leq x \leq 2 + \frac{\pi}{4} \\
0, & \text{otherwise}
\end{cases}
\]

\[
\delta = \frac{2 + \frac{\pi}{4}}{\sqrt{2}/2}
\]

\[
\delta h(x) = \begin{cases}
\frac{\sqrt{2}}{2}, & \text{if } 0 \leq x \leq 2 + \frac{\pi}{4} \\
0, & \text{otherwise}
\end{cases}
\]

So \(\delta h(x) \geq f(x) \) for all \(x \)
Example (cont.)

<table>
<thead>
<tr>
<th>x_i</th>
<th>u_i</th>
<th>$u_i\delta h(x_i)$</th>
<th>$f(x_i)$</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.860</td>
<td>0.975</td>
<td>0.689</td>
<td>0.68</td>
<td>Reject</td>
</tr>
<tr>
<td>1.518</td>
<td>0.357</td>
<td>0.252</td>
<td>0.44</td>
<td>Accept</td>
</tr>
<tr>
<td>0.357</td>
<td>0.920</td>
<td>0.650</td>
<td>0.34</td>
<td>Reject</td>
</tr>
<tr>
<td>1.306</td>
<td>0.272</td>
<td>0.192</td>
<td>0.52</td>
<td>Accept</td>
</tr>
</tbody>
</table>

Two samples from $f(x)$ are 1.518 and 1.306
Case Studies (Topics Introduced)

- Neutron transport (Monte Carlo time)
- Temperature inside a 2-D plate (Random walk)
- Two-dimensional Ising model (Metropolis algorithm)
- Room assignment problem (Simulated annealing)
- Parking garage (Monte Carlo time)
- Traffic circle (Simulating queues)
Neutron Transport
Example

Monte Carlo Time

<table>
<thead>
<tr>
<th>D (0–π)</th>
<th>Angle</th>
<th>u (0–1)</th>
<th>L ($-\ln u$)</th>
<th>$L\cos D$</th>
<th>Dist.</th>
<th>Absorb? (0–1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.0</td>
<td>0.20</td>
<td>1.59</td>
<td>1.59</td>
<td>1.59</td>
<td>0.41 (no)</td>
</tr>
<tr>
<td>1.55</td>
<td>89.2</td>
<td>0.34</td>
<td>1.08</td>
<td>0.01</td>
<td>1.60</td>
<td>0.84 (no)</td>
</tr>
<tr>
<td>0.42</td>
<td>24.0</td>
<td>0.27</td>
<td>1.31</td>
<td>1.20</td>
<td>2.80</td>
<td>0.57 (no)</td>
</tr>
<tr>
<td>0.33</td>
<td>19.4</td>
<td>0.60</td>
<td>0.52</td>
<td>0.49</td>
<td>3.29</td>
<td></td>
</tr>
</tbody>
</table>
Temperature Inside a 2-D Plate

Random walk
Example of Random Walk

$$0 \leq u < 1 \Rightarrow \lfloor 4u \rfloor \in \{0,1,2,3\}$$
2-D Ising Model
Metropolis Algorithm

• Use current random sample to generate next random sample
• Series of samples represents a random walk through the probability density function
• Short series of samples highly correlated
• Many samples can provide good coverage
Metropolis Algorithm Details

- Randomly select site to reverse spin
- If energy is lower, move to new state
- Otherwise, move with probability \(\rho = e^{-\frac{\Delta}{kT}} \)
- Rejection causes current state to be recorded another time
Room Assignment Problem

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>9</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>6</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>2</td>
<td>0</td>
<td>8</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>9</td>
<td>6</td>
<td>8</td>
<td>0</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>E</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>3</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>F</td>
<td>6</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

“Dislikes” matrix

Pairing A-B, C-D, and E-F leads to total conflict value of 32.
Physical Annealing

- Heat a solid until it melts
- Cool slowly to allow material to reach state of minimum energy
- Produces strong, defect-free crystal with regular structure
Simulated Annealing

• Makes analogy between physical annealing and solving combinatorial optimization problem
• Solution to problem = state of material
• Value of objective function = energy associated with state
• Optimal solution = minimum energy state
How Simulated Annealing Works

- Iterative algorithm, slowly lower T
- Randomly change solution to create alternate solution
- Compute Δ, the change in value of objective function
- If $\Delta < 0$, then jump to alternate solution
- Otherwise, jump to alternate solution with probability $e^{-\Delta/T}$
Performance of Simulated Annealing

- Rate of convergence depends on initial value of T and temperature change function.
- Geometric temperature change functions typical; e.g., $T_{i+1} = 0.999 \ T_i$.
- Not guaranteed to find optimal solution.
- Same algorithm using different random number streams can converge on different solutions.
- Opportunity for parallelism.
Convergence

Starting with higher initial temperature leads to more iterations before convergence.
Parking Garage

- Parking garage has S stalls
- Car arrivals fit Poisson distribution with mean A
- Stay in garage fits a normal distribution with mean M and standard deviation M/S
Implementation Idea

Times Spaces Are Available

<table>
<thead>
<tr>
<th>Time</th>
<th>Cars Rejected</th>
</tr>
</thead>
<tbody>
<tr>
<td>101.2</td>
<td></td>
</tr>
<tr>
<td>142.1</td>
<td></td>
</tr>
<tr>
<td>70.3</td>
<td></td>
</tr>
<tr>
<td>91.7</td>
<td></td>
</tr>
<tr>
<td>223.1</td>
<td></td>
</tr>
</tbody>
</table>

Current Time: 64.2
Car Count: 15
Cars Rejected: 2
Traffic Circle
<table>
<thead>
<tr>
<th></th>
<th>F</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>0.3</td>
<td>0.3</td>
<td>0.5</td>
<td>0.2</td>
<td>0.2</td>
<td>0.5</td>
<td>0.2</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>0.5</td>
<td>0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>0.4</td>
<td>0.2</td>
<td>0.1</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>0.2</td>
<td>0.5</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.3</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.3</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Traffic Circle Data Structures

<table>
<thead>
<tr>
<th>N</th>
<th>W</th>
<th>S</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>23</td>
<td>22</td>
<td>38</td>
</tr>
<tr>
<td>19</td>
<td>13</td>
<td>11</td>
<td>26</td>
</tr>
</tbody>
</table>

- **Offset**: 12
- **Arrival**: 1
- **ArrivalCnt**: 38
- **WaitCnt**: 26
- **Queue**: 3
- **QueueAccum**: 41

<table>
<thead>
<tr>
<th>Circle</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15</td>
</tr>
</tbody>
</table>
Summary (1/3)

• Applications of Monte Carlo methods
 – Numerical integration
 – Simulation

• Random number generators
 – Linear congruential
 – Lagged Fibonacci
Summary (2/3)

• Parallel random number generators
 – Manager/worker
 – Leapfrog
 – Sequence splitting
 – Independent sequences

• Non-uniform distributions
 – Analytical transformations
 – Box–Muller transformation
 – Rejection method
Summary (3/3)

• Concepts revealed in case studies
 – Monte Carlo time
 – Random walk
 – Metropolis algorithm
 – Simulated annealing
 – Modeling queues