16. Greedy Algorithms
16.1 An activity--selection problem

- Select a maximum-size subset of mutually compatible activities.
 - An activity set $S = \{a_1, a_2, ..., a_n\}$
 - Each activity a_i has a start time s_i and a finish time f_i, where $0 \leq s_i < f_i < \infty$
 - Compatible: if the intervals $[s_i, f_i)$ and $[s_j, f_j)$ do not overlap

- Resource Scheduling
Example

\[\begin{array}{ccc}
 k & s_k & f_k \\
 1 & 1 & 4 \\
 2 & 3 & 5 \\
 3 & 0 & 6 \\
 4 & 5 & 7 \\
 5 & 3 & 8 \\
 6 & 5 & 9 \\
 7 & 6 & 10 \\
 8 & 8 & 11 \\
 9 & 8 & 12 \\
 10 & 2 & 13 \\
 11 & 12 & 14 \\
\end{array} \]
Dynamic programming version

- Optimal substructure
 - \(S_{ij} = \{ a_k \in S : f_i \leq s_k < f_k \leq s_j \} \)
 - \(a_0 : f_0 = 0, \quad a_{n+1} : s_{n+1} = \infty \)
 - \(S = S_{0,n+1} \)
 - Let us assume that the activities are sorted in increasing order of finish time
 - \(f_0 \leq f_1 \leq f_2 \leq \ldots \leq f_n < f_{n+1} \)
 - \(S_{ij} = \emptyset, \) whenever \(i \geq j \)
 - Given an optimal solution \(A_{ij} \) to \(S_{ij} \) and \(a_k \in A_{ij} \)
 - \(A_{ij} = A_{ik} \cup \{a_k\} \cup A_{kj}. \)
 - \(S_{0,n+1} : \) an optimal solution to the entire problem
Dynamic programming version (Cont.)

- **Recursive equation**
 - \(c[i,j] \) : the number of activities in a maximum-size subset of mutually compatible activities in \(S_{ij} \)

\[
C[i,j] = \begin{cases}
0 & \text{if } S_{ij} = \emptyset \\
\max_{i<k<j} \{ c[i,k] + c[k,j] + 1 \} & \text{if } S_{ij} \neq \emptyset
\end{cases}
\]
Greedy solution

Theorem 16.1
- Consider any nonempty subproblem S_{ij}, and let a_m be the activity in S_{ij} with the earliest finish time:
 \[f_m = \min \{ f_k : a_k \text{ in } S_{ij} \} \]
- Then
 - Activity a_m is used in some maximum-size subset of mutually compatible activities of S_{ij}.
 - The subproblem S_{im} is empty.

Due to Theorem 16.1,
- Only one subproblem is used in an optimal solution.
- During the solution of subproblem, consider only one choice: the one with the earliest finish time in S_{ij}.
- We can solve each subproblem in a top-down fashion.
Greedy algorithms – Recursive version

RECURSIVE-ACTIVITY-SELECTOR(s, f, i, j)
1. $m \leftarrow i+1$
2. while $m < j$ and $s_m < f_i$
 3. do $m \leftarrow m+1$
 4. if $m < j$
 5. then return $\{a_m\} \cup$ RECURSIVE-ACTIVITY-SELECTOR(s, f, m, j)
 6. else return \emptyset
Greedy algorithms – Recursive version example

<table>
<thead>
<tr>
<th>k</th>
<th>s_k</th>
<th>f_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>12</td>
<td>∞</td>
<td>-</td>
</tr>
</tbody>
</table>

Diagram showing the recursive version example.
Greedy algorithms – Iterative version

GREEDY- ACTIVITY- SELECTOR(s, f)
1 n ← length[s]
2 A ← \{a_i\}
3 i ← 1
4 for m ← 2 to n
5 do if s_m ≥ f_i
6 then A ← A U \{a_m\}
7 i ← m
8 return A
16.2 Elements of the greedy strategy
Elements of the greedy strategy

- How can one tell if a greedy algorithm will solve a particular optimization problem?
 - There is no way in general
 - But the greedy-choice property and optimal substructure are the two key ingredients
 - If we can demonstrate that the problem has these properties, then we are well on the way to developing a greedy algorithm
Greedy-choice property

- A globally optimal solution can be arrived at by making a locally optimal greedy choice.
- Make the choice that looks best in the current problem, without considering results from subproblems.
Greedy-choice property

- Dynamic Programming
 - The choice at each step usually depends on the solutions to subproblems
 - Consequently, typically solve dynamic-programming problems in a bottom-up manner
 - Progress from smaller subproblems to larger subproblems
Greedy-choice property

- Greedy Algorithm
 - Make whatever choice seems best at the moment
 - And then solve the subproblem arising after the choice is made
 - Usually progress in a top-down fashion
 - Must prove that a greedy choice at each step yields a globally optimal solution
Optimal Substructure

- An optimal solution to the problem contains within it optimal solutions to subproblems
- Key ingredients of assessing the applicability of dynamic programming as well as greedy algorithms
Greedy versus dynamic programming

- The optimal-substructure property is exploited by both the greedy and dynamic-programming

- Because of this, there might be mistake to decide which approach is proper for given problem
Knapsack problem

- 0-1 and fractional knapsack problem
 - Both problems exhibit the optimal-substructure property
 - The fractional knapsack problem is solvable by a greedy strategy
 - The 0-1 knapsack problem is not solvable by a greedy strategy
 - The dynamic-programming is needed to find optimal solution for the 0-1 knapsack problem
0-1 knapsack problem

The value per pound

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Weight</th>
<th>Value per Pound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item 1</td>
<td>$60</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>Item 2</td>
<td>$100</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>Item 3</td>
<td>$120</td>
<td>4</td>
<td>30</td>
</tr>
<tr>
<td>Knapsack</td>
<td></td>
<td></td>
<td>50</td>
</tr>
</tbody>
</table>
0-1 knapsack problem

\[
\begin{align*}
30 & \quad 120 \\
20 & \quad 100 \\
\quad & + \\
\quad & = 220
\end{align*}
\]

\[
\begin{align*}
20 & \quad 100 \\
10 & \quad 60 \\
\quad & + \\
\quad & = 160
\end{align*}
\]

\[
\begin{align*}
10 & \quad 60 \\
\quad & + \\
\quad & = 180
\end{align*}
\]
Fractional knapsack problem

```
<table>
<thead>
<tr>
<th>Value</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>$80</td>
<td>20</td>
</tr>
<tr>
<td>$100</td>
<td>20</td>
</tr>
<tr>
<td>$60</td>
<td>10</td>
</tr>
</tbody>
</table>

Total = $240
```
Dynamic programming for 0-1 Knapsack Problem

- Let \(c[i, w] \) = value of solution for items 1...i and maximum weight w

\[
c[i, w] = \begin{cases}
0 & \text{if } i = 0 \text{ or } w = 0 \\
c[i-1, w] & \text{if } w_i > w \\
\max(v_i + c[i-1, w-w_i], c[i-1, w]) & \text{if } i > 0 \text{ and } w \geq w_i
\end{cases}
\]
Example

<table>
<thead>
<tr>
<th>i</th>
<th>W</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>60</td>
<td>100</td>
<td>160</td>
<td>160</td>
<td>160</td>
<td>160</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>60</td>
<td>100</td>
<td>160</td>
<td>180</td>
<td>220</td>
<td></td>
</tr>
</tbody>
</table>
Greedy Algorithm

Huffman Codes
Huffman Codes

- Typically Huffman codes save 20% to 90% of the space.

- Binary Character Code
 In this problem, we only consider about this case.

- Fixed Length Code
 - 3 bits to represent six characters.

- Variable Length Code
 - Considerably better than a fixed length code.

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>freq</td>
<td>45</td>
<td>13</td>
<td>12</td>
<td>16</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>F.C.</td>
<td>000</td>
<td>001</td>
<td>010</td>
<td>011</td>
<td>100</td>
<td>101</td>
</tr>
<tr>
<td>V.C.</td>
<td>0</td>
<td>101</td>
<td>100</td>
<td>111</td>
<td>1101</td>
<td>1100</td>
</tr>
</tbody>
</table>
Prefix Codes

- If we want to encode 16 characters using binary character code, what will be the average length of code?
- Why Prefix Codes?
- Prefix codes: codes in which no codeword is also a prefix of some other codeword.
- Encoding of prefix codes.
 - We must concatenate the codes, and we need a notion to denote concatenation.
- Decoding of prefix codes.
 - Traverse the constructed tree.
- Cost of a tree T corresponding to a prefix code.
 - $B(T) = \sum f(c) d_T(c)$ and c is a character.
Constructing a Huffman Code(1)

Step 1: Make frequency table and sort it.

- f: 5
- e: 9
- c: 12
- B: 13
- d: 16
- a: 45
Constructing a Huffman Code(2)

Step 2: Extract top-two elements and merge into one node.

c:12 b:13 14 d:16 a:45

0

1

f:5 e:9
Constructing a Huffman Code(3)

Step 3: Back to Step 1 until there’s only one element in the Queue.
Constructing a Huffman Code(4)
Constructing a Huffman Code(2)

C: a set of n characters
$f(i)$: the frequency of a character
Q: a priority queue, keyed on $f(i)$

for $i \leftarrow 1$ to $n - 1$
 do $z \leftarrow$ anode()
 $x \leftarrow$ left$(z) \leftarrow$ ExtractMin(Q)
 $y \leftarrow$ right$(z) \leftarrow$ ExtractMin(Q)
 $f(z) \leftarrow f(x) + f(y)$
 insert(Q, z)
 return ExtractMin(Q)
Correctness of Huffman’s Algorithm

- **Greedy Choice**
 - In each step, we select and extract two minimum elements in the queue, merge them into one node and insert the node in the queue again.
 - We can prove that this greedy choice yields globally optimal solution.

- **Optimal Substructure**
 - After greedy choice, the sub-solution must be optimal solution.
 - In this case, sub-tree \(T' \) of \(T \), \(T' = T - \{x, y\} \), represents an optimal prefix code for the alphabet \(C' = C - \{x, y\} \cup \{z\} \). (Let \(z \) be the parent of \(x \) and \(y \), and \(f(z) = f(x) + f(y) \))
 - Huffman’s Algorithm produces an optimal prefix code because it satisfies above two properties.
Proof of Greedy Choice Property(1)

Lemma
- There exists an optimal prefix code for C in which the code-words for x and y have the same length and differ only in the last bit.

Proof
- b, c: Any characters with $f(b) \leq f(c)$.
- x, y: characters with $f(x) \leq f(y) \leq f(b)$.
- Let’s suppose 3 cases:
 - An optimal tree T, in which b, c are in the deepest leaf.
 - A tree T', in which b and x are exchanged their position in T.
 - A tree T'', in which y and c are exchanged their position in T'.
Proof of Greedy Choice
Property(2)

- $B(T) - B(T') \geq 0 \& B(T) - B(T'') \geq 0$, and $B(T) - B(T'') \geq 0$.
- $B(T) - B(T') = f(x)d_T(x) + f(b)d_T(b) - f(x)d_{T'}(x) - f(b)d_{T'}(b)$
- $= f(x)d_T(x) + f(b)d_T(b) - f(x)d_T(b) - f(b)d_T(x)$
- $= (f(b) - f(x))(d_T(b) - d_T(x)) \geq 0$

And $B(T') - B(T'')$ can be calculated easily in this way.

- But $B(T)$ is the minimum cost tree so, $B(T) = B(T'')$

- So there must be a optimal prefix code tree which has the two least frequent elements in the deepest node.

- This lemma guarantees that the selection of the two least frequent elements at one step must be in the optimal solutions.
Lemma 16.3 - Optimal Substructure

Let C be a given alphabet with frequency f[c] defined for each character c ∈ C. Let x and y be two characters in C with minimum frequency. Let C’ be the alphabet C with characters x, y removed and (new) character z added, so that C’ = C - {x, y}∪ {z}; define f for C’ as for C, except that f[z] = f[x] + f[y]. Let T’ be any tree representing an optimal prefix code for the alphabet C’. Then the tree T, obtained from T’ by replacing the leaf node for z with an internal node having x and y as children, represents an optimal prefix code for the alphabet C.
Proof of Optimal Substructure (1)

T: full binary tree representing an optimal prefix code over an alphabet C.

$f(z) = f(x) + f(y)$, $T' = T - \{x, y\}$, $C' = C - \{x, y\} \cup \{z\}$

$B(T)$ is the cost of T and $B(T')$ is the cost of T'

For each $c \in C - \{x, y\}$, $d_T'(c) = d_T(c)$

\[
B(T) - B(T') = f(x)d_T'(x) + f(y)d_T'(y) - f(z)d_T(z) \\
= f(x)d_T'(x) + f(y)d_T'(y) - (f(x) + f(y))d_T(z) \\
= f(x)d_T'(x) + f(y)d_T'(y) - (f(x) + f(y))(d_T(x) - 1) \\
= f(x) + f(y)
\]
Proof of Optimal Substructure(2)

Let’s suppose that T' is the optimal prefix code for C, not T! That is $B(T') < B(T)$. Add x and y as the children of the z in T'. Make a new tree T'' for character set C. Then, $B(T'') = B(T') + f(x) + f(y) < B(T)$

→ This contradicts the optimality of T.

So T' must be optimal for the alphabet C!
Proof of optimality of the Huffman

Then we can get the optimal prefix code for \(C \) using *Huffman*.

- **The greedy choice property**
 - There must be an optimal code for two least frequent elements that have the same length and differ only in the last 1 bit.
 - So we build one node using the two least frequent elements, and instead of the two elements, insert the new node with the frequency that's the sum of the two elements.

- **The optimal substructure property**
 - A tree that's constructed using the remaining elements, must be optimal, too.
 - So if we do this step repeatedly, we can get the optimal prefix code.