Introduction to Computer Programming

Lecture 7

Copyright from Prof. Charles E. Leiserson & Erik D. Demaine
LECTURE 7

- Skip Lists
- Data structure
- Randomized insertion
- With-high-probability bound
- Analysis
- Coin flipping
Skip lists

- Simple randomized dynamic search structure
 - Invented by William Pugh in 1989
 - Easy to implement
- Maintains a dynamic set of \(n \) elements in \(O(\lg n) \) time per operation in expectation and \textit{with high probability}
 - Strong guarantee on tail of distribution of \(T(n) \)
 - \(O(\lg n) \) “almost always”
One linked list

Start from simplest data structure: (sorted) linked list

- Searches take $\Theta(n)$ time in worst case
- How can we speed up searches?
Two linked lists

Suppose we had *two* sorted linked lists (on subsets of the elements)

- Each element can appear in one or both lists
- How can we speed up searches?
Two linked lists as a subway

IDEA: Express and local subway lines (à la New York City 7th Avenue Line)
- Express line connects a few of the stations
- Local line connects all stations
- Links between lines at common stations
Searching in two linked lists

** SEARCH(x) : **

- Walk right in top linked list (L_1) until going right would go too far
- Walk down to bottom linked list (L_2)
- Walk right in L_2 until element found (or not)
Searching in two linked lists

Example: \texttt{SEARCH(59)}

Too far: \texttt{59 < 72}
Design of two linked lists

QUESTION: Which nodes should be in L_1?

- In a subway, the “popular stations”
- Here we care about *worst-case performance*
- **Best approach:** Evenly space the nodes in L_1
- But *how many nodes* should be in L_1?
Analysis of two linked lists

Analysis:

- Search cost is roughly $|L_1| + \frac{|L_2|}{|L_1|}$
- Minimized (up to constant factors) when terms are equal

$|L_1|^2 = |L_2| = n \Rightarrow |L_1| = \sqrt{n}$
Analysis of two linked lists

ANALYSIS:

- $|L_1| = \sqrt{n}$
- $|L_2| = n$
- Search cost is roughly

$|L_1| + \frac{|L_2|}{|L_1|} = \sqrt{n} + \frac{n}{\sqrt{n}} = 2\sqrt{n}$
More linked lists

What if we had more sorted linked lists?

- 2 sorted lists \(\Rightarrow 2 \cdot \sqrt{n} \)
- 3 sorted lists \(\Rightarrow 3 \cdot 3\sqrt{n} \)
- \(k \) sorted lists \(\Rightarrow k \cdot k\sqrt{n} \)
- \(\log n \) sorted lists \(\Rightarrow \log n \cdot \log n = 2 \log n \)

\[\sqrt{n} \]
$\lg n$ linked lists

$\lg n$ sorted linked lists are like a binary tree (in fact, level-linked B^+-tree; see Problem Set 5)
Searching in \(\lg n \) linked lists

Example: \(\text{SEARCH}(72) \)
Skip lists

Ideal skip list is this $\lg n$ linked list structure

Skip list data structure maintains roughly this structure subject to updates (insert/delete)
INSERT(x)

To insert an element x into a skip list:

- **Search**(x) to see where x fits in bottom list
- Always insert into bottom list

Invariant: Bottom list contains all elements

- Insert into some of the lists above…

Question: To which other lists should we add x?
INSERT(x)

QUESTION: To which other lists should we add x?

IDEA: Flip a (fair) coin; if **heads**, **promote** x to next level up and flip again

- Probability of promotion to next level = 1/2
- On average:
 - 1/2 of the elements promoted 0 levels
 - 1/4 of the elements promoted 1 level
 - 1/8 of the elements promoted 2 levels
 - etc.
Example of skip list

Exercise: Try building a skip list from scratch by repeated insertion using a real coin

Small change:
- Add special $-\infty$ value to every list \Rightarrow can search with the same algorithm
Skip lists

A **skip list** is the result of insertions (and deletions) from an initially empty structure (containing just $-\infty$)

- **INSERT(x)** uses random coin flips to decide promotion level
- **DELETE(x)** removes x from all lists containing it
Skip lists

A *skip list* is the result of insertions (and deletions) from an initially empty structure (containing just $-\infty$)

- **Insert**(x) uses random coin flips to decide promotion level
- **Delete**(x) removes x from all lists containing it

How good are skip lists? (speed/balance)

- **Intuitively**: Pretty good on average
- **Claim**: Really, really good, almost always
With-high-probability theorem

Theorem: With high probability, every search in an n-element skip list costs $O(\lg n)$.
With-high-probability theorem

Theorem: With high probability, every search in a skip list costs $O(\lg n)$

- **Informally:** Event E occurs with high probability (w.h.p.) if, for any $\alpha \geq 1$, there is an appropriate choice of constants for which E occurs with probability at least $1 - O(1/n^\alpha)$
 - In fact, constant in $O(\lg n)$ depends on α

- **Formally:** Parameterized event E_α occurs with high probability if, for any $\alpha \geq 1$, there is an appropriate choice of constants for which E_α occurs with probability at least $1 - c_\alpha/n^\alpha$
With-high-probability theorem

Theorem: With high probability, every search in a skip list costs $O(\lg n)$

- **Informally:** Event E occurs *with high probability* (w.h.p.) if, for any $\alpha \geq 1$, there is an appropriate choice of constants for which E occurs with probability at least $1 - O(1/n^\alpha)$

- **Idea:** Can make error probability $O(1/n^\alpha)$ very small by setting α large, e.g., 100

- Almost certainly, bound remains true for entire execution of polynomial-time algorithm
Boole’s inequality / union bound

Recall:

Boole’s Inequality / Union Bound:

For any random events E_1, E_2, \ldots, E_k,

$$
\Pr\{E_1 \cup E_2 \cup \ldots \cup E_k\}
\leq \Pr\{E_1\} + \Pr\{E_2\} + \ldots + \Pr\{E_k\}
$$

Application to with-high-probability events:

If $k = n^{O(1)}$, and each E_i occurs with high probability, then so does $E_1 \cap E_2 \cap \ldots \cap E_k$
Analysis Warmup

Lemma: With high probability, an n-element skip list has $O(\lg n)$ levels.

Proof:

- Error probability for having at most $c \lg n$ levels
 \[\Pr\{\text{more than } c \lg n \text{ levels}\} \leq n \cdot \Pr\{\text{element } x \text{ promoted at least } c \lg n \text{ times}\} \]
 (by Boole’s Inequality)

 \[= n \cdot (1/2^{c \lg n}) \]
 \[= n \cdot (1/n^c) \]
 \[= 1/n^c - 1 \]
LEMMA: With high probability, n-element skip list has $O(lg n)$ levels

PROOF:

- Error probability for having at most $c lg n$ levels is $\leq 1/n^c - 1$.
- This probability is \textit{polynomially small}, i.e., at most n^α for $\alpha = c - 1$.
- We can make α arbitrarily large by choosing the constant c in the $O(lg n)$ bound accordingly.
Proof of theorem

Theorem: With high probability, every search in an n-element skip list costs $O(\lg n)$

Cool Idea: Analyze search backwards—leaf to root

- Search starts [ends] at leaf (node in bottom level)
- At each node visited:
 - If node wasn’t promoted higher (got TAILS here), then we go [came from] left
 - If node was promoted higher (got HEADS here), then we go [came from] up
- Search stops [starts] at the root (or $-\infty$)
Proof of theorem

Theorem: With high probability, every search in an n-element skip list costs $O(\lg n)$

Cool Idea: Analyze search backwards—leaf to root

Proof:

- Search makes “up” and “left” moves until it reaches the root (or $-\infty$)
- Number of “up” moves < number of levels $\leq c \lg n$ w.h.p. \((\text{Lemma}) \)
- \Rightarrow w.h.p., number of moves is at most the number of times we need to flip a coin to get $c \lg n$ heads
Coin flipping analysis

Claim: Number of coin flips until $c \lg n$ Heads

$= \Theta(\lg n)$ with high probability

Proof:

Obviously $\Omega(\lg n)$: at least $c \lg n$

Prove $O(\lg n)$ “by example”:

- Say we make $10 c \lg n$ flips
- When are there at least $c \lg n$ Heads?

(Later generalize to arbitrary values of 10)
Coin flipping analysis

Claim: Number of coin flips until \(c \lg n \) heads

\[= \Theta(\lg n) \]

with high probability

Proof:

- \(\Pr\{\text{exactly } c \lg n \text{ heads}\} = \binom{10c \lg n}{c \lg n} \cdot \left(\frac{1}{2}\right)^{c \lg n} \cdot \left(\frac{1}{2}\right)^{9c \lg n} \)

 \[\text{orders} \quad \text{HEADS} \quad \text{TAILS} \]

- \(\Pr\{\text{at most } c \lg n \text{ heads}\} \leq \binom{10c \lg n}{c \lg n} \cdot \left(\frac{1}{2}\right)^{9c \lg n} \)

 \[\text{overestimate on orders} \quad \text{TAILS} \]
Coin flipping analysis (cont’d)

- Recall bounds on \(\left(\frac{y}{x} \right)^x \leq \left(\frac{y}{x} \right)^x \leq \left(\frac{e}{x} \right)^x \)

- \(\Pr\{\text{at most } c \lg n \text{ HEADS}\} \)

\[
\leq \left(\frac{10c \lg n}{c \lg n} \right) \cdot \left(\frac{1}{2} \right)^{9c \lg n}
\leq \left(e \frac{10c \lg n}{c \lg n} \right)^{c \lg n} \cdot \left(\frac{1}{2} \right)^{9c \lg n}
= \left(10e \right)^{c \lg n} 2^{-9c \lg n}
= 2^{\lg(10e) \cdot c \lg n} 2^{-9c \lg n}
= 2^{\left[\lg(10e) - 9 \right] \cdot c \lg n}
= \frac{1}{n^\alpha} \text{ for } \alpha = \left[9 - \lg(10e) \right] \cdot c \]
Coin flipping analysis (cont’d)

- \(\Pr\{\text{at most } c \lg n \text{ HEADs}\} \leq \frac{1}{n^\alpha} \) for \(\alpha = [9 - \lg(10e)]c \)
- **Key Property:** \(\alpha \to \infty \) as \(10 \to \infty \), for any \(c \)
- So set \(10 \), i.e., constant in \(O(\lg n) \) bound, large enough to meet desired \(\alpha \)

This completes the proof of the coin-flipping claim and the proof of the theorem.