Introduction to Computer Programming
LECTURE 5

Sorting Lower Bounds
• Decision trees

Linear-Time Sorting
• Counting sort
• Radix sort

Order Statistics
• Randomized divide and conquer
• Analysis of expected time
• Worst-case linear-time order statistics
• Analysis
How fast can we sort?

All the sorting algorithms we have seen so far are *comparison sorts*: only use comparisons to determine the relative order of elements.

- *E.g.*, insertion sort, merge sort, quicksort, heapsort.

The best worst-case running time that we’ve seen for comparison sorting is $O(n \lg n)$.

Is $O(n \lg n)$ the best we can do?

Decision trees can help us answer this question.
Decision-tree example

Sort $\langle a_1, a_2, \ldots, a_n \rangle$

Each internal node is labeled $i:j$ for $i, j \in \{1, 2, \ldots, n\}$.
- The left subtree shows subsequent comparisons if $a_i \leq a_j$.
- The right subtree shows subsequent comparisons if $a_i \geq a_j$.
Decision-tree example

Sort $\langle a_1, a_2, a_3 \rangle$
$= \langle 9, 4, 6 \rangle$:

- The left subtree shows subsequent comparisons if $a_i \leq a_j$.
- The right subtree shows subsequent comparisons if $a_i \geq a_j$.

Each internal node is labeled $i:j$ for $i, j \in \{1, 2, \ldots, n\}$.
Each internal node is labeled $i:j$ for $i, j \in \{1, 2, \ldots, n\}$.

- The left subtree shows subsequent comparisons if $a_i \leq a_j$.
- The right subtree shows subsequent comparisons if $a_i \geq a_j$.

Sort $\langle a_1, a_2, a_3 \rangle = \langle 9, 4, 6 \rangle$:

```
1:2
2:3       1:3
123       9 ≥ 6
132       312
213       231
321
```
Each internal node is labeled $i:j$ for $i, j \in \{1, 2, \ldots, n\}$.
- The left subtree shows subsequent comparisons if $a_i \leq a_j$.
- The right subtree shows subsequent comparisons if $a_i \geq a_j$.
Sort $\langle a_1, a_2, a_3 \rangle$
$= \langle 9, 4, 6 \rangle$:

Each leaf contains a permutation $\langle \pi(1), \pi(2), \ldots, \pi(n) \rangle$ to indicate that the ordering $a_{\pi(1)} \leq a_{\pi(2)} \leq \cdots \leq a_{\pi(n)}$ has been established.
A decision tree can model the execution of any comparison sort:

- One tree for each input size n.
- View the algorithm as splitting whenever it compares two elements.
- The tree contains the comparisons along all possible instruction traces.
- The running time of the algorithm = the length of the path taken.
- Worst-case running time = height of tree.
Lower bound for decision-tree sorting

Theorem. Any decision tree that can sort \(n \) elements must have height \(\Omega(n \lg n) \).

Proof. The tree must contain \(\geq n! \) leaves, since there are \(n! \) possible permutations. A height-\(h \) binary tree has \(\leq 2^h \) leaves. Thus, \(n! \leq 2^h \).

\[
\therefore h \geq \lg(n!)
\geq \lg ((n/e)^n)
= n \lg n - n \lg e
= \Omega(n \lg n).
\]
Lower bound for comparison sorting

Corollary. Heapsort and merge sort are asymptotically optimal comparison sorting algorithms.
Sorting in linear time

Counting sort: No comparisons between elements.

• **Input**: \(A[1 \ldots n] \), where \(A[j] \in \{1, 2, \ldots, k\} \).
• **Output**: \(B[1 \ldots n] \), sorted.
• **Auxiliary storage**: \(C[1 \ldots k] \).
Counting sort

for $i \leftarrow 1$ to k
 do $C[i] \leftarrow 0$
for $j \leftarrow 1$ to n
 do $C[A[j]] \leftarrow C[A[j]] + 1$ \hspace{1em} \triangleright C[i] = |\{\text{key} = i\}|
for $i \leftarrow 2$ to k
 do $C[i] \leftarrow C[i] + C[i-1]$ \hspace{1em} \triangleright C[i] = |\{\text{key} \leq i\}|
for $j \leftarrow n$ downto 1
 do $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$
Counting-sort example

\begin{align*}
A & : \quad 4 \quad 1 \quad 3 \quad 4 \quad 3 \\
B & : & \\
C & : & 1 \quad 2 \quad 3 \quad 4
\end{align*}
Loop 1

for $i \leftarrow 1$ to k
 do $C[i] \leftarrow 0$
Loop 2

\[
\begin{array}{c|ccccc}
A & 1 & 2 & 3 & 4 & 5 \\
\hline
4 & 1 & 3 & 4 & 3 & 1 \\
\end{array}
\]

\[
\begin{array}{c|ccccc}
B & 1 & 2 & 3 & 4 & 5 \\
\hline
\end{array}
\]

\[
\begin{array}{c|ccccc}
C & 1 & 2 & 3 & 4 & 5 \\
\hline
0 & 0 & 0 & 0 & 1 \\
\end{array}
\]

\[
\text{for } j \leftarrow 1 \text{ to } n \quad \text{do } C[A[j]] \leftarrow C[A[j]] + 1 \quad \triangleright C[i] = |\{\text{key} = i\}|
\]
Loop 2

for $j \leftarrow 1$ to n
\hspace{1cm} do $C[A[j]] \leftarrow C[A[j]] + 1$
\hspace{1cm} $\triangleright C[i] = |\{\text{key} = i\}|$
Loop 2

\[
\begin{align*}
A: & \quad \begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
4 & 1 & 3 & 4 & 3 \\
\end{array} \\
B: & \quad \begin{array}{cccc}
1 & 2 & 3 & 4 \\
\end{array} \\
C: & \quad \begin{array}{cccc}
1 & 0 & 1 & 1 \\
\end{array}
\end{align*}
\]

\textbf{for } j \leftarrow 1 \textbf{ to } n
\textbf{ do } C[A[j]] \leftarrow C[A[j]] + 1 \quad \triangleright \quad C[i] = |\{\text{key} = i\}|
Loop 2

\[\text{for } j \leftarrow 1 \text{ to } n\]
\[\text{do } C[A[j]] \leftarrow C[A[j]] + 1 \quad \triangleright \quad C[i] = |\{\text{key} = i\}|\]
Loop 2

\[\begin{array}{ccccc}
A: & 1 & 2 & 3 & 4 & 5 \\
4 & 1 & 3 & 4 & 3
\end{array}\]

\[\begin{array}{ccccc}
B: & & & & & \\
& & & & &
\end{array}\]

\[\begin{array}{ccccc}
C: & 1 & 2 & 3 & 4 \\
1 & 0 & 2 & 2
\end{array}\]

\textbf{for} \ j \leftarrow 1 \ \textbf{to} \ n \\
\textbf{do}\ C[A[j]] \leftarrow C[A[j]] + 1 \quad \triangleright \quad C[i] = |\{\text{key} = i\}|
Loop 3

\[
\begin{align*}
A: & \quad \begin{bmatrix}
4 & 1 & 3 & 4 & 3 \\
\end{bmatrix} \\
B: & \quad \begin{bmatrix}
\end{bmatrix} \\
C: & \quad \begin{bmatrix}
1 & 0 & 2 & 2 \\
\end{bmatrix} \\
C': & \quad \begin{bmatrix}
1 & 1 & 2 & 2 \\
\end{bmatrix}
\end{align*}
\]

\[
\text{for } i \leftarrow 2 \text{ to } k \\
\quad \text{do } C[i] \leftarrow C[i] + C[i-1] \quad \triangleright \quad C[i] = |\{\text{key} \leq i\}|
\]
Loop 3

\[\]

\[\begin{array}{c|c|c|c|c|c} & 1 & 2 & 3 & 4 & 5 \\ \hline A: & 4 & 1 & 3 & 4 & 3 \\ \end{array}\]

\[\begin{array}{c|c|c|c|c} & 1 & 2 & 3 & 4 \\ \hline B: & & & & \\ \end{array}\]

\[\begin{array}{c|c|c|c|c} & 1 & 0 & 2 & 2 \\ \hline C: & & & & \\ \end{array}\]

\[\begin{array}{c|c|c|c|c} & 1 & 1 & 3 & 2 \\ \hline C': & & & & \\ \end{array}\]

\textbf{for} \(i \leftarrow 2\ \textbf{to} \ k\)
\textbf{do} \(C[i] \leftarrow C[i] + C[i-1]\)
\(\triangleright \ C[i] = |\{\text{key} \leq i\}|\)
Loop 3

\[
\begin{align*}
A: & \quad 1 & 2 & 3 & 4 & 5 \\
& \quad \begin{array}{|c|c|c|c|c|}
& 4 & 1 & 3 & 4 & 3 \\
\end{array} \\
B: & \quad \begin{array}{|c|c|c|c|c|}
& & & & & \\
\end{array} \\
C: & \quad 1 & 0 & 2 & 2 \\
C': & \quad 1 & 1 & 3 & 5 \\
\end{align*}
\]

\textbf{for} \ i \leftarrow 2 \ \textbf{to} \ k \quad \textbf{do} \ C[i] \leftarrow C[i] + C[i-1] \quad \triangleright \ C[i] = |\{\text{key} \leq i\}|
Loop 4

\begin{align*}
\text{for } j &\leftarrow n \text{ downto } 1 \\
\text{do } B[C[A[j]]] &\leftarrow A[j] \\
C[A[j]] &\leftarrow C[A[j]] - 1
\end{align*}
Loop 4

\[
\begin{array}{c}
A: \\
\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
4 & 1 & 3 & 4 & 3 \\
\end{array} \\
\end{array}
\]

\[
\begin{array}{c}
B: \\
\begin{array}{ccccc}
1 & 2 & 3 & 4 \\
3 & 4 \\
\end{array} \\
\end{array}
\]

\[
\begin{array}{c}
C: \\
\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
1 & 1 & 2 & 5 \\
\end{array} \\
\end{array}
\]

\[
\begin{array}{c}
C': \\
\begin{array}{ccccc}
1 & 2 & 3 & 4 \\
1 & 1 & 2 & 4 \\
\end{array} \\
\end{array}
\]

for \(j \leftarrow n \) downto 1

\[
\begin{array}{c}
C[A[j]] \leftarrow C[A[j]] - 1 \\
\end{array}
\]
Loop 4

\[
\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 \\
A: & 4 & 1 & 3 & 4 & 3 \\
\end{array}
\]

\[
\begin{array}{cccccc}
1 & 2 & 3 & 4 \\
B: & 3 & 3 & 4 \\
\end{array}
\]

\[
\begin{array}{cccccc}
1 & 1 & 2 & 4 \\
C: & 1 & 1 & 1 & 4 \\
\end{array}
\]

\[
\begin{array}{cccccc}
1 & 1 & 2 & 4 \\
C': & 1 & 1 & 1 & 4 \\
\end{array}
\]

\[\text{for } j \leftarrow n \text{ downto } 1 \]
\[\text{do } B[C[A[j]]] \leftarrow A[j] \]
\[C[A[j]] \leftarrow C[A[j]] - 1 \]
Loop 4

for $j \leftarrow n \text{ downto } 1$

\[B[C[A[j]]] \leftarrow A[j] \]
\[C[A[j]] \leftarrow C[A[j]] - 1 \]
Loop 4

\[
\begin{align*}
A &: \begin{bmatrix} 4 & 1 & 3 & 4 & 3 \end{bmatrix} \\
B &: \begin{bmatrix} 1 & 3 & 3 & 4 & 4 \end{bmatrix} \\
C &: \begin{bmatrix} 0 & 1 & 1 & 4 \end{bmatrix} \\
C' &: \begin{bmatrix} 0 & 1 & 1 & 3 \end{bmatrix}
\end{align*}
\]

\[
\text{for } j \leftarrow n \text{ downto } 1 \\
\text{do } B[C[A[j]]] \leftarrow A[j] \\
C[A[j]] \leftarrow C[A[j]] - 1
\]
Analysis

\(\Theta(k) \)
\[
\begin{align*}
&\text{for } i \leftarrow 1 \text{ to } k \\
&\quad \text{do } C[i] \leftarrow 0
\end{align*}
\]

\(\Theta(n) \)
\[
\begin{align*}
&\text{for } j \leftarrow 1 \text{ to } n \\
&\quad \text{do } C[A[j]] \leftarrow C[A[j]] + 1
\end{align*}
\]

\(\Theta(k) \)
\[
\begin{align*}
&\text{for } i \leftarrow 2 \text{ to } k \\
&\quad \text{do } C[i] \leftarrow C[i] + C[i-1]
\end{align*}
\]

\(\Theta(n) \)
\[
\begin{align*}
&\text{for } j \leftarrow n \text{ downto } 1 \\
&\quad \text{do } B[C[A[j]]] \leftarrow A[j] \quad C[A[j]] \leftarrow C[A[j]] - 1
\end{align*}
\]

\(\Theta(n + k) \)
Running time

If $k = O(n)$, then counting sort takes $\Theta(n)$ time.

- But, sorting takes $\Omega(n \lg n)$ time!
- Where’s the fallacy?

Answer:

- *Comparison sorting* takes $\Omega(n \lg n)$ time.
- Counting sort is not a *comparison sort*.
- In fact, not a single comparison between elements occurs!
Stable sorting

Counting sort is a \textit{stable} sort: it preserves the input order among equal elements.

\begin{itemize}
 \item \textbf{A}: 4 1 3 4 3
 \item \textbf{B}: 1 3 3 4 4
\end{itemize}

\textbf{Exercise}: What other sorts have this property?
Radix sort

• **Origin**: Herman Hollerith’s card-sorting machine for the 1890 U.S. Census. (See Appendix 1.)

• Digit-by-digit sort.

• Hollerith’s original (bad) idea: sort on most-significant digit first.

• Good idea: Sort on *least-significant digit first* with auxiliary *stable* sort.
Operation of radix sort

<table>
<thead>
<tr>
<th>3 2 9</th>
<th>7 2 0</th>
<th>7 2 0</th>
<th>3 2 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 5 7</td>
<td>3 5 5</td>
<td>3 2 9</td>
<td>3 5 5</td>
</tr>
<tr>
<td>6 5 7</td>
<td>4 3 6</td>
<td>4 3 6</td>
<td>4 3 6</td>
</tr>
<tr>
<td>8 3 9</td>
<td>4 5 7</td>
<td>8 3 9</td>
<td>4 5 7</td>
</tr>
<tr>
<td>4 3 6</td>
<td>6 5 7</td>
<td>3 5 5</td>
<td>6 5 7</td>
</tr>
<tr>
<td>7 2 0</td>
<td>3 2 9</td>
<td>4 5 7</td>
<td>7 2 0</td>
</tr>
<tr>
<td>3 5 5</td>
<td>8 3 9</td>
<td>6 5 7</td>
<td>8 3 9</td>
</tr>
</tbody>
</table>
Correctness of radix sort

Induction on digit position

- Assume that the numbers are sorted by their low-order $t-1$ digits.
- Sort on digit t
Correctness of radix sort

Induction on digit position

- Assume that the numbers are sorted by their low-order $(t-1)$ digits.

- Sort on digit t
 - Two numbers that differ in digit t are correctly sorted.
Correctness of radix sort

Induction on digit position

• Assume that the numbers are sorted by their low-order \(t - 1 \) digits.

• Sort on digit \(t \)
 ▪ Two numbers that differ in digit \(t \) are correctly sorted.
 ▪ Two numbers equal in digit \(t \) are put in the same order as the input \(\Rightarrow \) correct order.
Analysis of radix sort

- Assume counting sort is the auxiliary stable sort.
- Sort \(n \) computer words of \(b \) bits each.
- Each word can be viewed as having \(b/r \) base-\(2^r \) digits.

Example: 32-bit word

\[
\begin{array}{cccc}
8 & 8 & 8 & 8 \\
\end{array}
\]

\(r = 8 \Rightarrow b/r = 4 \) passes of counting sort on base-\(2^8 \) digits; or \(r = 16 \Rightarrow b/r = 2 \) passes of counting sort on base-\(2^{16} \) digits.

How many passes should we make?
Recall: Counting sort takes $\Theta(n + k)$ time to sort n numbers in the range from 0 to $k - 1$. If each b-bit word is broken into r-bit pieces, each pass of counting sort takes $\Theta(n + 2^r)$ time. Since there are b/r passes, we have

$$T(n, b) = \Theta\left(\frac{b}{r} \left(n + 2^r\right)\right).$$

Choose r to minimize $T(n, b)$:

- Increasing r means fewer passes, but as $r \gg \lg n$, the time grows exponentially.
Choosing r

$$T(n, b) = \Theta\left(\frac{b}{r} (n + 2^r)\right)$$

Minimize $T(n, b)$ by differentiating and setting to 0.

Or, just observe that we don’t want $2^r \gg n$, and there’s no harm asymptotically in choosing r as large as possible subject to this constraint.

Choosing $r = \lg n$ implies $T(n, b) = \Theta(bn/\lg n)$.

- For numbers in the range from 0 to $n^d - 1$, we have $b = d \lg n \Rightarrow$ radix sort runs in $\Theta(dn)$ time.
Conclusions

In practice, radix sort is fast for large inputs, as well as simple to code and maintain.

Example (32-bit numbers):
• At most 3 passes when sorting \(\geq 2000 \) numbers.
• Merge sort and quicksort do at least \(\lceil \lg 2000 \rceil = 11 \) passes.

Downside: Unlike quicksort, radix sort displays little locality of reference, and thus a well-tuned quicksort fares better on modern processors, which feature steep memory hierarchies.
Order statistics

Select the ith smallest of n elements (the element with rank i).

- $i = 1$: minimum;
- $i = n$: maximum;
- $i = \left\lfloor \frac{(n+1)/2}{2} \right\rfloor$ or $\left\lceil \frac{(n+1)/2}{2} \right\rceil$: median.

Naive algorithm: Sort and index ith element. Worst-case running time $= \Theta(n \ lg n) + \Theta(1) = \Theta(n \ lg n)$, using merge sort or heapsort (not quicksort).
Randomized divide-and-conquer algorithm

\textbf{RAND-SELECT}(A, p, q, i) \quad \triangleright \quad \text{i}^{\text{th}} \text{ smallest of } A[p \ldots q]

\textbf{if} \quad p = q \quad \textbf{then return} \quad A[p]

r \leftarrow \text{RAND-PARTITION}(A, p, q)

k \leftarrow r - p + 1 \quad \triangleright \quad k = \text{rank}(A[r])

\textbf{if} \quad i = k \quad \textbf{then return} \quad A[r]

\textbf{if} \quad i < k

\quad \textbf{then return} \quad \text{RAND-SELECT}(A, p, r - 1, i)

\textbf{else return} \quad \text{RAND-SELECT}(A, r + 1, q, i - k)
Example

Select the $i = 7$th smallest:

\[
\begin{array}{cccccccccc}
6 & 10 & 13 & 5 & 8 & 3 & 2 & 11 \\
\end{array}
\]

pivot

Partition:

\[
\begin{array}{cccccccccc}
2 & 5 & 3 & 6 & 8 & 13 & 10 & 11 \\
\end{array}
\]

Select the $7 - 4 = 3$rd smallest recursively.
Intuition for analysis

(All our analyses today assume that all elements are distinct.)

Lucky:
\[T(n) = T(9n/10) + \Theta(n) \]
\[= \Theta(n) \]

Unlucky:
\[T(n) = T(n - 1) + \Theta(n) \]
\[= \Theta(n^2) \]

Worse than sorting!

\[n^{\log_{10} 9} = n^0 = 1 \]

Case 3

arithmetic series
Analysis of expected time

The analysis follows that of randomized quicksort, but it’s a little different.

Let $T(n) =$ the random variable for the running time of **RAND-SELECT** on an input of size n, assuming random numbers are independent.

For $k = 0, 1, \ldots, n-1$, define the *indicator random variable*

\[
X_k = \begin{cases}
1 & \text{if } \text{PARTITION} \text{ generates a } k : n-k-1 \text{ split,} \\
0 & \text{otherwise.}
\end{cases}
\]
Analysis (continued)

To obtain an upper bound, assume that the ith element always falls in the larger side of the partition:

$$T(n) = \begin{cases}
 T(\max\{0, n-1\}) + \Theta(n) & \text{if } 0 : n-1 \text{ split}, \\
 T(\max\{1, n-2\}) + \Theta(n) & \text{if } 1 : n-2 \text{ split}, \\
 \vdots \\
 T(\max\{n-1, 0\}) + \Theta(n) & \text{if } n-1 : 0 \text{ split},
\end{cases}$$

$$= \sum_{k=0}^{n-1} X_k \left(T(\max\{k, n-k-1\}) + \Theta(n) \right).$$
Calculating expectation

\[E[T(n)] = E\left[\sum_{k=0}^{n-1} X_k (T(\max\{k, n-k-1\}) + \Theta(n)) \right] \]

Take expectations of both sides.
Calculating expectation

\[E[T(n)] = E\left[\sum_{k=0}^{n-1} X_k \left(T(\max\{k, n-k-1\}) + \Theta(n) \right) \right] \]

\[= \sum_{k=0}^{n-1} E\left[X_k \left(T(\max\{k, n-k-1\}) + \Theta(n) \right) \right] \]

Linearity of expectation.
Calculating expectation

\[E[T(n)] = E\left[\sum_{k=0}^{n-1} X_k (T(\max\{k, n-k-1\}) + \Theta(n)) \right] \]

\[= \sum_{k=0}^{n-1} E[X_k] \cdot E[T(\max\{k, n-k-1\}) + \Theta(n)] \]

Independence of \(X_k \) from other random choices.
Calculating expectation

\[
E[T(n)] = E\left[\sum_{k=0}^{n-1} X_k (T(\max\{k, n-k-1\}) + \Theta(n)) \right]
\]

\[
= \sum_{k=0}^{n-1} E[X_k] \cdot E[T(\max\{k, n-k-1\}) + \Theta(n)]
\]

\[
= \frac{1}{n} \sum_{k=0}^{n-1} E[T(\max\{k, n-k-1\})] + \frac{1}{n} \sum_{k=0}^{n-1} \Theta(n)
\]

Linearity of expectation; \(E[X_k] = 1/n \).
Calculating expectation

\[E[T(n)] = E \left[\sum_{k=0}^{n-1} X_k (T(\max\{k, n-k-1\}) + \Theta(n)) \right] \]

\[= \sum_{k=0}^{n-1} E[X_k] \cdot E[T(\max\{k, n-k-1\}) + \Theta(n)] \]

\[= \frac{1}{n} \sum_{k=0}^{n-1} E[T(\max\{k, n-k-1\})] + \frac{1}{n} \sum_{k=0}^{n-1} \Theta(n) \]

\[\leq \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} E[T(k)] + \Theta(n) \]

Upper terms appear twice.
Hairy recurrence

(But not quite as hairy as the quicksort one.)

\[E[T(n)] = \frac{2}{n} \sum_{k=[n/2]}^{n-1} E[T(k)] + \Theta(n) \]

Prove: \(E[T(n)] \leq cn \) for constant \(c > 0 \).

- The constant \(c \) can be chosen large enough so that \(E[T(n)] \leq cn \) for the base cases.

Use fact: \(\sum_{k=[n/2]}^{n-1} k \leq \frac{3}{8} n^2 \) (exercise).
Substitution method

\[E[T(n)] \leq \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} c_k + \Theta(n) \]

Substitute inductive hypothesis.
Substitution method

\[E[T(n)] \leq \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} ck + \Theta(n) \]

\leq \frac{2c}{n} \left(\frac{3}{8} n^2 \right) + \Theta(n)

Use fact.
Substitution method

\[E[T(n)] \leq 2 \sum_{n/2}^{n-1} c_k + \Theta(n) \]

\[\leq \frac{2c}{n} \left(\frac{3}{8} n^2 \right) + \Theta(n) \]

\[= cn - \left(\frac{cn}{4} - \Theta(n) \right) \]

Express as \textit{desired} – \textit{residual}.
Substitution method

\[E[T(n)] \leq \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} c k + \Theta(n) \]
\[\leq \frac{2c}{n} \left(\frac{3}{8} n^2 \right) + \Theta(n) \]
\[= cn - \left(\frac{cn}{4} - \Theta(n) \right) \]
\[\leq cn, \]

if \(c \) is chosen large enough so that \(cn/4 \) dominates the \(\Theta(n) \).
Summary of randomized order-statistic selection

- Works fast: linear expected time.
- Excellent algorithm in practice.
- But, the worst case is very bad: $\Theta(n^2)$.

Q. Is there an algorithm that runs in linear time in the worst case?

A. Yes, due to Blum, Floyd, Pratt, Rivest, and Tarjan [1973].

Idea: Generate a good pivot recursively.
Worst-case linear-time order statistics

SELECT(*i*, *n*)

1. Divide the *n* elements into groups of 5. Find the median of each 5-element group by rote.
2. Recursively **SELECT** the median *x* of the \(\lfloor n/5 \rfloor \) group medians to be the pivot.
3. Partition around the pivot *x*. Let *k* = \(\text{rank}(x) \).
4. **if** *i* = *k** then return *x***
 elseif *i* < *k***
 then recursively **SELECT** the *i*th smallest element in the lower part
 else recursively **SELECT** the \((i-k)\)th smallest element in the upper part

Same as **RAND-SELECT**
Choosing the pivot
Choosing the pivot

1. Divide the n elements into groups of 5.
Choosing the pivot

1. Divide the n elements into groups of 5. Find the median of each 5-element group by rote.
Choosing the pivot

1. Divide the n elements into groups of 5. Find the median of each 5-element group by rote.
2. Recursively SELECT the median x of the $\lfloor n/5 \rfloor$ group medians to be the pivot.
At least half the group medians are \(\leq x \), which is at least \(\left\lfloor \frac{n}{5} \right\rfloor / 2 = \left\lfloor \frac{n}{10} \right\rfloor \) group medians.
At least half the group medians are $\leq x$, which is at least $\lceil \lfloor n/5 \rfloor /2 \rceil = \lfloor n/10 \rfloor$ group medians.

- Therefore, at least $3 \lfloor n/10 \rfloor$ elements are $\leq x$.

(Assume all elements are distinct.)
At least half the group medians are $\leq x$, which is at least $\left\lfloor \frac{n}{5} \right\rfloor /2 = \left\lfloor \frac{n}{10} \right\rfloor$ group medians.

- Therefore, at least $3 \left\lfloor \frac{n}{10} \right\rfloor$ elements are $\leq x$.
- Similarly, at least $3 \left\lfloor \frac{n}{10} \right\rfloor$ elements are $\geq x$.

(Assume all elements are distinct.)
Minor simplification

- For $n \geq 50$, we have $3 \lfloor n/10 \rfloor \geq n/4$.
- Therefore, for $n \geq 50$ the recursive call to SELECT in Step 4 is executed recursively on $\leq 3n/4$ elements.
- Thus, the recurrence for running time can assume that Step 4 takes time $T(3n/4)$ in the worst case.
- For $n < 50$, we know that the worst-case time is $T(n) = \Theta(1)$.
Developing the recurrence

<table>
<thead>
<tr>
<th>$T(n)$</th>
<th>$\text{SELECT}(i, n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Theta(n)$</td>
<td>1. Divide the n elements into groups of 5. Find the median of each 5-element group by rote.</td>
</tr>
<tr>
<td>$T(n/5)$</td>
<td>2. Recursively SELECT the median x of the $\lfloor n/5 \rfloor$ group medians to be the pivot.</td>
</tr>
<tr>
<td>$\Theta(n)$</td>
<td>3. Partition around the pivot x. Let $k = \text{rank}(x)$.</td>
</tr>
</tbody>
</table>
| $T(3n/4)$ | 4. if $i = k$ then return x
elseif $i < k$
then recursively SELECT the ith smallest element in the lower part
else recursively SELECT the $(i-k)$th smallest element in the upper part |

$T(n) = \Theta(n)$
Solving the recurrence

\[T(n) = T\left(\frac{1}{5} n\right) + T\left(\frac{3}{4} n\right) + \Theta(n) \]

Substitution:

\[
T(n) \leq \frac{1}{5} cn + \frac{3}{4} cn + \Theta(n)
\]

\[
= \frac{19}{20} cn + \Theta(n)
\]

\[
= cn \left(1 - \frac{1}{20} \right) cn - \Theta(n) \]

\[
\leq cn ,
\]

if \(c \) is chosen large enough to handle both the \(\Theta(n) \) and the initial conditions.
Conclusions

• Since the work at each level of recursion is a constant fraction (19/20) smaller, the work per level is a geometric series dominated by the linear work at the root.

• In practice, this algorithm runs slowly, because the constant in front of n is large.

• The randomized algorithm is far more practical.

Exercise: Why not divide into groups of 3?