Contents

Lecture 1
Analysis of Algorithms
• Insertion sort
• Asymptotic analysis
• Merge sort
• Recurrences

Asymptotic Notation
• O-, Ω-, and Θ-notation

Recurrences
• Substitution method
• Iterating the recurrence
• Recursion tree
• Master method
Analysis of algorithms

The theoretical study of computer-program performance and resource usage.

What’s more important than performance?

- modularity
- correctness
- maintainability
- functionality
- robustness

- user-friendliness
- programmer time
- simplicity
- extensibility
- reliability
Why study algorithms and performance?

- Algorithms help us to understand *scalability*.
- Performance often draws the line between what is feasible and what is impossible.
- Algorithmic mathematics provides a *language* for talking about program behavior.
- Performance is the *currency* of computing.
- The lessons of program performance generalize to other computing resources.
- Speed is fun!
The problem of sorting

Input: sequence $\langle a_1, a_2, \ldots, a_n \rangle$ of numbers.

Output: permutation $\langle a'_1, a'_2, \ldots, a'_n \rangle$ such that $a'_1 \leq a'_2 \leq \cdots \leq a'_n$.

Example:

Input: 8 2 4 9 3 6

Output: 2 3 4 6 8 9
Insertion sort

```
INSERTION-SORT (A, n)  \[ A[1 \ldots n] \]
  for j ← 2 to n
    do key ← A[j]
        i ← j − 1
        while i > 0 and A[i] > key
          do A[i+1] ← A[i]
              i ← i − 1
        A[i+1] = key
```

“pseudocode”
Insertion sort

Insertion-Sort \((A, n) \quad \triangleright \quad A[1 \ldots n]\)

for \(j \leftarrow 2\) to \(n\)

\[
\begin{align*}
\text{do} & \quad \text{key} \leftarrow A[j] \\
\text{d} & \quad i \leftarrow j - 1 \\
\text{while} & \quad i > 0 \text{ and } A[i] > \text{key} \\
\text{d} & \quad A[i+1] \leftarrow A[i] \\
\text{d} & \quad i \leftarrow i - 1 \\
\text{d} & \quad A[i+1] = \text{key}
\end{align*}
\]

“A pseudocode”

\[A:\]

```
1 \rightarrow i \rightarrow \ldots \rightarrow j \rightarrow \dots \rightarrow n
```

sorted

key
Example of insertion sort

8 2 4 9 3 6
Example of insertion sort

8 2 4 9 3 6
Example of insertion sort

8 2 4 9 3 6
2 8 4 9 3 6
Example of insertion sort

8 2 4 9 3 6

2 8 4 9 3 6
Example of insertion sort

8 2 4 9 3 6
2 8 4 9 3 6
2 4 8 9 3 6
Example of insertion sort

8 2 4 9 3 6
2 8 4 9 3 6
2 4 8 9 3 6
Example of insertion sort

8 2 4 9 3 6
2 8 4 9 3 6
2 4 8 9 3 6
2 4 8 9 3 6
Example of insertion sort

```
8  2  4  9  3  6
2  8  4  9  3  6
2  4  8  9  3  6
2  4  8  9  3  6
```
Example of insertion sort

<table>
<thead>
<tr>
<th>8</th>
<th>2</th>
<th>4</th>
<th>9</th>
<th>3</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>8</td>
<td>4</td>
<td>9</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>8</td>
<td>9</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>8</td>
<td>9</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>8</td>
<td>9</td>
<td>6</td>
</tr>
</tbody>
</table>
Example of insertion sort

8 2 4 9 3 6
2 8 4 9 3 6
2 4 8 9 3 6
2 4 8 9 3 6
2 3 4 8 9 6
Example of insertion sort

<table>
<thead>
<tr>
<th>8</th>
<th>2</th>
<th>4</th>
<th>9</th>
<th>3</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>8</td>
<td>4</td>
<td>9</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>8</td>
<td>9</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>8</td>
<td>9</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>8</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

done
Running time

- The running time depends on the input: an already sorted sequence is easier to sort.
- Parameterize the running time by the size of the input, since short sequences are easier to sort than long ones.
- Generally, we seek upper bounds on the running time, because everybody likes a guarantee.
Kinds of analyses

Worst-case: (usually)
- \(T(n) \) = maximum time of algorithm on any input of size \(n \).

Average-case: (sometimes)
- \(T(n) \) = expected time of algorithm over all inputs of size \(n \).
- Need assumption of statistical distribution of inputs.

Best-case: (bogus)
- Cheat with a slow algorithm that works fast on *some* input.
What is insertion sort’s worst-case time?
• It depends on the speed of our computer:
 • relative speed (on the same machine),
 • absolute speed (on different machines).

BIG IDEA:
• Ignore machine-dependent constants.
• Look at *growth* of $T(n)$ as $n \to \infty$.

“*Asymptotic Analysis*”
Θ-notation

Math:
Θ(g(n)) = \{ f(n) : \text{there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \text{ for all } n \geq n_0 \}

Engineering:
• Drop low-order terms; ignore leading constants.
• Example: \(3n^3 + 90n^2 - 5n + 6046 = \Theta(n^3) \)
Asymptotic performance

When \(n \) gets large enough, a \(\Theta(n^2) \) algorithm always beats a \(\Theta(n^3) \) algorithm.

- We shouldn’t ignore asymptotically slower algorithms, however.
- Real-world design situations often call for a careful balancing of engineering objectives.
- Asymptotic analysis is a useful tool to help to structure our thinking.
Insertion sort analysis

Worst case: Input reverse sorted.

\[
T(n) = \sum_{j=2}^{n} \Theta(j) = \Theta(n^2) \quad \text{[arithmetic series]}
\]

Average case: All permutations equally likely.

\[
T(n) = \sum_{j=2}^{n} \Theta(j/2) = \Theta(n^2)
\]

Is insertion sort a fast sorting algorithm?
- Moderately so, for small \(n \).
- Not at all, for large \(n \).
Merge sort

MERGE-SORT \(A[1 \ldots n] \)

1. If \(n = 1 \), done.
2. Recursively sort \(A[1 \ldots \lfloor n/2 \rfloor] \) and \(A[\lceil n/2 \rceil + 1 \ldots n] \).
3. “Merge” the 2 sorted lists.

Key subroutine: MERGE
Merging two sorted arrays

20 12
13 11
 9
2 1
Merging two sorted arrays

20 12
13 11
7 9
2 1
1
Merging two sorted arrays

20 12 | 20 12
13 11 | 13 11
 7 9 | 7 9
 2 1 | 2
 1

20 12 | 20 12
13 11 | 13 11
 7 9 | 7 9
 2 1 | 2
 1
Merging two sorted arrays

<table>
<thead>
<tr>
<th>20 12</th>
<th>20 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 11</td>
<td>13 11</td>
</tr>
<tr>
<td>7 9</td>
<td>7 9</td>
</tr>
<tr>
<td>2 1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
Merging two sorted arrays

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1st array:

- 2
- 1

2nd array:

- 2
- 1

Merging process:

- 20
- 12
- 20
- 12
- 20
- 12
- 13
- 11
- 13
- 11
- 13
- 11

- 1
- 2
- 2
- 9
- 9
- 7
- 7
- 9
Merging two sorted arrays

<table>
<thead>
<tr>
<th>20</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>20</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>20</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>20</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>20</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>20</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>20</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>20</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>20</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>20</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>20</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
</tr>
</tbody>
</table>
Merging two sorted arrays

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Merging two sorted arrays
Merging two sorted arrays
Merging two sorted arrays

20 12 20 12 20 12 20 12 20 12
13 11 13 11 13 11 13 11 13 11
7 9 7 9 7 9 7 9 9
2 1 2 1 2 1 2 1 2
1 2 7 9 9 9 9 9 9
Merging two sorted arrays
Merging two sorted arrays
Merging two sorted arrays

Time = $\Theta(n)$ to merge a total of n elements (linear time).
Analyzing merge sort

$T(n)$	**MERGE-SORT** $A[1 \ldots n]$
$\Theta(1)$ | 1. If $n = 1$, done.
$2T(n/2)$ | 2. Recursively sort $A[1 \ldots \lceil n/2 \rceil]$ and $A[\lceil n/2 \rceil+1 \ldots n]$.
$\Theta(n)$ | 3. “Merge” the 2 sorted lists

Sloppiness: Should be $T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor)$, but it turns out not to matter asymptotically.
Recurrence for merge sort

\[T(n) = \begin{cases}
 \Theta(1) & \text{if } n = 1; \\
 2T(n/2) + \Theta(n) & \text{if } n > 1.
\end{cases} \]

• We shall usually omit stating the base case when \(T(n) = \Theta(1) \) for sufficiently small \(n \), but only when it has no effect on the asymptotic solution to the recurrence.
• CLRS and Lecture 2 provide several ways to find a good upper bound on \(T(n) \).
Recursion tree

Solve $T(n) = 2T(n/2) + cn$, where $c > 0$ is constant.
Recursion tree

Solve $T(n) = 2T(n/2) + cn$, where $c > 0$ is constant.
Recursion tree

Solve $T(n) = 2T(n/2) + cn$, where $c > 0$ is constant.
Recursion tree

Solve $T(n) = 2T(n/2) + cn$, where $c > 0$ is constant.
Recursion tree

Solve $T(n) = 2T(n/2) + cn$, where $c > 0$ is constant.
Recursion tree

Solve \(T(n) = 2T(n/2) + cn \), where \(c > 0 \) is constant.

\[h = \lg n \]

\[\Theta(1) \]
Recursion tree

Solve $T(n) = 2T(n/2) + cn$, where $c > 0$ is constant.

$h = \log n$

$\Theta(1)$
Recursion tree

Solve $T(n) = 2T(n/2) + cn$, where $c > 0$ is constant.

$h = \lg n$

$\Theta(1)$
Recursion tree

Solve $T(n) = 2T(n/2) + cn$, where $c > 0$ is constant.

$h = \lg n$

$\Theta(1)$
Solve \(T(n) = 2T(n/2) + cn \), where \(c > 0 \) is constant.
Solve $T(n) = 2T(n/2) + cn$, where $c > 0$ is constant.

$h = \lg n$

$\Theta(1)$

$\#\text{leaves} = n$

$\Theta(n)$

Total = $\Theta(n \lg n)$
Conclusions

- $\Theta(n \lg n)$ grows more slowly than $\Theta(n^2)$.
- Therefore, merge sort asymptotically beats insertion sort in the worst case.
- In practice, merge sort beats insertion sort for $n > 30$ or so.
- Go test it out for yourself!
Asymptotic notation

\textbf{O-notation (upper bounds):}

We write \(f(n) = O(g(n)) \) if there exist constants \(c > 0, \ n_0 > 0 \) such that \(0 \leq f(n) \leq cg(n) \) for all \(n \geq n_0 \).
Asymptotic notation

O-notation (upper bounds):

We write \(f(n) = O(g(n)) \) if there exist constants \(c > 0, n_0 > 0 \) such that \(0 \leq f(n) \leq cg(n) \) for all \(n \geq n_0 \).

Example: \(2n^2 = O(n^3) \) \((c = 1, n_0 = 2) \)
Asymptotic notation

O-notation (upper bounds):

We write \(f(n) = O(g(n)) \) if there exist constants \(c > 0, n_0 > 0 \) such that \(0 \leq f(n) \leq cg(n) \) for all \(n \geq n_0 \).

Example: \(2n^2 = O(n^3) \) \((c = 1, n_0 = 2)\)
Asymptotic notation

O-notation (upper bounds):

We write $f(n) = O(g(n))$ if there exist constants $c > 0$, $n_0 > 0$ such that $0 \leq f(n) \leq cg(n)$ for all $n \geq n_0$.

Example: $2n^2 = O(n^3)$
($c = 1$, $n_0 = 2$)

functions, not values

| funny, “one-way” equality |
Set definition of O-notation

\[O(g(n)) = \{ f(n) : \text{there exist constants } c > 0, n_0 > 0 \text{ such that } 0 \leq f(n) \leq cg(n) \text{ for all } n \geq n_0 \} \]
Set definition of O-notation

\[O(g(n)) = \{ f(n) : \text{there exist constants } c > 0, \ n_0 > 0 \text{ such that } 0 \leq f(n) \leq cg(n) \text{ for all } n \geq n_0 \} \]

Example: \(2n^2 \in O(n^3) \)
Set definition of O-notation

\[O(g(n)) = \{ f(n) : \text{there exist constants } c > 0, n_0 > 0 \text{ such that } 0 \leq f(n) \leq cg(n) \text{ for all } n \geq n_0 \} \]

Example: \(2n^2 \in O(n^3) \)

(Logicians: \(\lambda n.2n^2 \in O(\lambda n.n^3) \), but it’s convenient to be sloppy, as long as we understand what’s really going on.)
Macro substitution

Convention: A set in a formula represents an anonymous function in the set.
Macro substitution

Convention: A set in a formula represents an anonymous function in the set.

Example: \(f(n) = n^3 + O(n^2) \)

means

\(f(n) = n^3 + h(n) \)

for some \(h(n) \in O(n^2) \).
Macro substitution

Convention: A set in a formula represents an anonymous function in the set.

Example: $n^2 + O(n) = O(n^2)$ means for any $f(n) \in O(n)$:

$n^2 + f(n) = h(n)$

for some $h(n) \in O(n^2)$.
Ω-notation (lower bounds)

O-notation is an *upper-bound* notation. It makes no sense to say $f(n)$ is at least $O(n^2)$.
Ω-notation (lower bounds)

O-notation is an *upper-bound* notation. It makes no sense to say \(f(n) \) is at least \(O(n^2) \).

\[
\Omega(g(n)) = \{ f(n) : \text{there exist constants } c > 0, n_0 > 0 \text{ such that } 0 \leq cg(n) \leq f(n) \text{ for all } n \geq n_0 \}
\]
Ω-notation (lower bounds)

\(O \)-notation is an *upper-bound* notation. It makes no sense to say \(f(n) \) is at least \(O(n^2) \).

\[
\Omega(g(n)) = \{ f(n) : \text{there exist constants } c > 0, n_0 > 0 \text{ such that } 0 \leq cg(n) \leq f(n) \text{ for all } n \geq n_0 \}
\]

Example: \(\sqrt{n} = \Omega(lg n) \) (\(c = 1, n_0 = 16 \))
Θ-notation (tight bounds)

\[\Theta(g(n)) = O(g(n)) \cap \Omega(g(n)) \]
\(\Theta \)-notation (tight bounds)

\[\Theta(g(n)) = O(g(n)) \cap \Omega(g(n)) \]

Example: \(\frac{1}{2} n^2 - 2n = \Theta(n^2) \)
O-notation and \(\omega \)-notation

O-notation and *Ω*-notation are like \(\leq \) and \(\geq \).

o-notation and \(\omega \)-notation are like < and >.

\[
\alpha(g(n)) = \{ f(n) : \text{for any constant } c > 0, \text{ there is a constant } n_0 > 0 \text{ such that } 0 \leq f(n) < cg(n) \text{ for all } n \geq n_0 \}
\]

Example: \(2n^2 = o(n^3) \) \((n_0 = 2/c) \)
o-notation and ω-notation

O-notation and *Ω*-notation are like \(\leq \) and \(\geq \).

o-notation and \(\omega \)-notation are like \(<\) and \(>\).

\[
\omega(g(n)) = \{ f(n) : \text{for any constant } c > 0, \text{there is a constant } n_0 > 0 \text{ such that } 0 \leq cg(n) < f(n) \text{ for all } n \geq n_0 \}
\]

Example: \(\sqrt{n} = \omega(\lg n) \) \((n_0 = 1+1/c) \)
Solving recurrences

- The analysis of merge sort from *Lecture 1* required us to solve a recurrence.
- Recurrences are like solving integrals, differential equations, etc.
 - Learn a few tricks.
- *Lecture 3*: Applications of recurrences to divide-and-conquer algorithms.
Substitution method

The most general method:

1. **Guess** the form of the solution.
2. **Verify** by induction.
3. **Solve** for constants.
Substitution method

The most general method:
1. **Guess** the form of the solution.
2. **Verify** by induction.
3. **Solve** for constants.

Example: \(T(n) = 4T(n/2) + n \)
- [Assume that \(T(1) = \Theta(1) \).]
- Guess \(O(n^3) \). (Prove \(O \) and \(\Omega \) separately.)
- Assume that \(T(k) \leq ck^3 \) for \(k < n \).
- Prove \(T(n) \leq cn^3 \) by induction.
Example of substitution

\[T(n) = 4T(n/2) + n \]
\[\leq 4c(n/2)^3 + n \]
\[= (c/2)n^3 + n \]
\[= cn^3 - ((c/2)n^3 - n) \leftarrow \text{desired} - \text{residual} \]
\[\leq cn^3 \leftarrow \text{desired} \]

whenever \((c/2)n^3 - n \geq 0\), for example, if \(c \geq 2\) and \(n \geq 1\).
Example (continued)

- We must also handle the initial conditions, that is, ground the induction with base cases.
- **Base:** $T(n) = \Theta(1)$ for all $n < n_0$, where n_0 is a suitable constant.
- For $1 \leq n < n_0$, we have “$\Theta(1)$” $\leq cn^3$, if we pick c big enough.
Example (continued)

- We must also handle the initial conditions, that is, ground the induction with base cases.
- **Base:** $T(n) = \Theta(1)$ for all $n < n_0$, where n_0 is a suitable constant.
- For $1 \leq n < n_0$, we have $“\Theta(1)” \leq cn^3$, if we pick c big enough.

This bound is not tight!
A tighter upper bound?

We shall prove that $T(n) = O(n^2)$.
A tighter upper bound?

We shall prove that \(T(n) = O(n^2) \).

Assume that \(T(k) \leq ck^2 \) for \(k < n \):

\[
T(n) = 4T(n/2) + n \\
\leq 4c(n/2)^2 + n \\
= cn^2 + n \\
= O(n^2)
\]
A tighter upper bound?

We shall prove that $T(n) = O(n^2)$.

Assume that $T(k) \leq ck^2$ for $k < n$:

\[
T(n) = 4T(n/2) + n \\
\leq 4c(n/2)^2 + n \\
= cn^2 + n \\
= O(n^2) \quad \text{(Wrong!)}
\]

Wrong! We must prove the I.H.
A tighter upper bound?

We shall prove that $T(n) = O(n^2)$.

Assume that $T(k) \leq ck^2$ for $k < n$:

\[
T(n) = 4T(n/2) + n \\
\leq 4c(n/2)^2 + n \\
= cn^2 + n \\
= O(n^2) \text{ (Wrong! We must prove the I.H.)} \\
= cn^2 - (-n) \quad [\text{desired} - \text{residual}] \\
\leq cn^2 \quad \text{for no choice of } c > 0. \quad \text{Lose!}
\]
A tighter upper bound!

Idea: Strengthen the inductive hypothesis.
- *Subtract* a low-order term.

Inductive hypothesis: $T(k) \leq c_1 k^2 - c_2 k$ for $k < n$.
A tighter upper bound!

Idea: Strengthen the inductive hypothesis.
- *Subtract* a low-order term.

Inductive hypothesis: $T(k) \leq c_1 k^2 - c_2 k$ for $k < n$.

$$T(n) = 4T(n/2) + n$$
$$= 4(c_1(n/2)^2 - c_2(n/2)) + n$$
$$= c_1 n^2 - 2c_2 n + n$$
$$= c_1 n^2 - c_2 n - (c_2 n - n)$$
$$\leq c_1 n^2 - c_2 n \text{ if } c_2 \geq 1.$$
A tighter upper bound!

Idea: Strengthen the inductive hypothesis.
- *Subtract* a low-order term.

Inductive hypothesis: $T(k) \leq c_1 k^2 - c_2 k$ for $k < n$.

\[
T(n) = 4T(n/2) + n
= 4(c_1(n/2)^2 - c_2(n/2)) + n
= c_1 n^2 - 2c_2 n + n
= c_1 n^2 - c_2 n - (c_2 n - n)
\leq c_1 n^2 - c_2 n \text{ if } c_2 \geq 1.
\]

Pick c_1 big enough to handle the initial conditions.
Recursion-tree method

• A recursion tree models the costs (time) of a recursive execution of an algorithm.
• The recursion-tree method can be unreliable, just like any method that uses ellipses (…).
• The recursion-tree method promotes intuition, however.
• The recursion tree method is good for generating guesses for the substitution method.
Example of recursion tree

Solve $T(n) = T(n/4) + T(n/2) + n^2$:
Example of recursion tree

Solve $T(n) = T(n/4) + T(n/2) + n^2$:

$T(n)$
Example of recursion tree

Solve $T(n) = T(n/4) + T(n/2) + n^2$:
Example of recursion tree

Solve $T(n) = T(n/4) + T(n/2) + n^2$:
Example of recursion tree

Solve \(T(n) = T(n/4) + T(n/2) + n^2: \)

\[
\begin{align*}
&n^2 \\
&\quad (n/4)^2 \quad (n/2)^2 \\
&\quad (n/16)^2 \quad (n/8)^2 \quad (n/8)^2 \quad (n/4)^2 \\
&\quad \vdots \\
&\quad \Theta(1)
\end{align*}
\]
Example of recursion tree

Solve \(T(n) = T(n/4) + T(n/2) + n^2: \)

\[\begin{array}{c}
\bullet \\
\quad n^2 \\
\quad \quad (n/4)^2 \\
\quad \quad \quad (n/16)^2 \\
\quad \quad \quad \quad \vdots \\
\quad \quad \quad \quad \Theta(1) \\
\end{array} \]
Example of recursion tree

Solve $T(n) = T(n/4) + T(n/2) + n^2$:
Example of recursion tree

Solve $T(n) = T(n/4) + T(n/2) + n^2$:
Example of recursion tree

Solve $T(n) = T(n/4) + T(n/2) + n^2$:

\[\Theta(1) \]

\[\text{Total} = n^2 \left(1 + \frac{5}{16} + \left(\frac{5}{16} \right)^2 + \left(\frac{5}{16} \right)^3 + \ldots \right) = \Theta(n^2) \quad \text{geometric series} \]
The master method applies to recurrences of the form

\[T(n) = a T(n/b) + f(n), \]

where \(a \geq 1, \ b > 1, \) and \(f \) is asymptotically positive.
Three common cases

Compare $f(n)$ with $n^{\log_b a}$:

1. $f(n) = O(n^{\log_b a - \varepsilon})$ for some constant $\varepsilon > 0$.

 • $f(n)$ grows polynomially slower than $n^{\log_b a}$ (by an n^ε factor).

 Solution: $T(n) = \Theta(n^{\log_b a})$.
Three common cases

Compare \(f(n) \) with \(n^{\log_b a} \):

1. \(f(n) = O(n^{\log_b a - \varepsilon}) \) for some constant \(\varepsilon > 0 \).
 - \(f(n) \) grows polynomially slower than \(n^{\log_b a} \) (by an \(n^\varepsilon \) factor).

 Solution: \(T(n) = \Theta(n^{\log_b a}) \).

2. \(f(n) = \Theta(n^{\log_b a \lg^k n}) \) for some constant \(k \geq 0 \).
 - \(f(n) \) and \(n^{\log_b a} \) grow at similar rates.

 Solution: \(T(n) = \Theta(n^{\log_b a \lg^{k+1} n}) \).
Three common cases (cont.)

Compare $f(n)$ with $n^{\log_b a}$:

3. $f(n) = \Omega(n^{\log_b a} + \varepsilon)$ for some constant $\varepsilon > 0$.
 - $f(n)$ grows polynomially faster than $n^{\log_b a}$ (by an n^ε factor),

 and $f(n)$ satisfies the regularity condition that $af(n/b) \leq cf(n)$ for some constant $c < 1$.

 Solution: $T(n) = \Theta(f(n))$.

Examples

\textbf{Ex.} \quad \text{\(T(n) = 4T(n/2) + n \)}
\quad \text{\(a = 4, \; b = 2 \Rightarrow n^{\log_b a} = n^2; \; f(n) = n. \)}
\textbf{Case 1:} \quad \text{\(f(n) = O(n^2 - \varepsilon) \quad \text{for} \; \varepsilon = 1. \)}
\text{\(\therefore \; T(n) = \Theta(n^2). \)}
Examples

Ex. \(T(n) = 4T(n/2) + n \)
\(a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n. \)

Case 1: \(f(n) = O(n^2 - \varepsilon) \) for \(\varepsilon = 1. \)
\[\therefore T(n) = \Theta(n^2). \]

Ex. \(T(n) = 4T(n/2) + n^2 \)
\(a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^2. \)

Case 2: \(f(n) = \Theta(n^2 \lg^0 n), \) that is, \(k = 0. \)
\[\therefore T(n) = \Theta(n^2 \lg n). \]
Examples

Ex. \(T(n) = 4T(n/2) + n^3 \)
\[a = 4, \ b = 2 \implies n^{\log_b a} = n^2; \ f(n) = n^3. \]

CASE 3: \(f(n) = \Omega(n^2 + \varepsilon) \) for \(\varepsilon = 1 \)
and \(4(n/2)^3 \leq cn^3 \) (reg. cond.) for \(c = 1/2 \).
\[\therefore \ T(n) = \Theta(n^3). \]
Examples

Ex. \(T(n) = 4T(n/2) + n^3 \)
\[a = 4, \; b = 2 \Rightarrow n^\log_b a = n^2; \; f(n) = n^3. \]

Case 3: \(f(n) = \Omega(n^2 + \varepsilon) \) for \(\varepsilon = 1 \)
and \(4(n/2)^3 \leq cn^3 \) (reg. cond.) for \(c = 1/2. \)
\[\therefore \; T(n) = \Theta(n^3). \]

Ex. \(T(n) = 4T(n/2) + n^2/\lg n \)
\[a = 4, \; b = 2 \Rightarrow n^\log_b a = n^2; \; f(n) = n^2/\lg n. \]
Master method does not apply. In particular, for every constant \(\varepsilon > 0, \) we have \(n^\varepsilon = \omega(\lg n). \)
Idea of master theorem

Recursion tree:

\[f(n) \]
\[f(n/b) \quad f(n/b) \quad \cdots \quad f(n/b) \]
\[f(n/b^2) \quad f(n/b^2) \quad \cdots \quad f(n/b^2) \]
\[\vdots \]
\[T(1) \]
Idea of master theorem

Recursion tree:

\[f(n) \quad a \quad f(n) \]
\[f(n/b) \quad f(n/b) \quad \cdots \quad f(n/b) \quad a f(n/b) \]
\[f(n/b^2) \quad f(n/b^2) \quad \cdots \quad f(n/b^2) \quad a^2 f(n/b^2) \]
\[\vdots \]
\[T(1) \]
Idea of master theorem

Recursion tree:

\[f(n) \]
\[\cdots \]
\[f(n/b) \quad f(n/b) \quad \cdots \quad f(n/b) \quad af(n/b) \]
\[\cdots \]
\[f(n/b^2) \quad f(n/b^2) \quad \cdots \quad f(n/b^2) \quad a^2 f(n/b^2) \]
\[\vdots \]
\[T(1) \]

\[h = \log_b n \]
Idea of master theorem

Recursion tree:

\[f(n) \rightarrow f(n/b) \rightarrow f(n/b^2) \rightarrow \cdots \]

\[\text{#leaves} = a^h = a^{\log_b n} = n^{\log_b a} \]

\[T(1) \leq a f(n/b) \leq n^{\log_b a} T(1) \]
Idea of master theorem

Recursion tree:

CASE 1: The weight increases geometrically from the root to the leaves. The leaves hold a constant fraction of the total weight.

\[h = \log_b n \]

\[T(1) \]

\[n^{\log_b a} T(1) \]

\[\Theta(n^{\log_b a}) \]
Idea of master theorem

Recursion tree:

\[
\begin{align*}
&T(1) \quad n^{\log_b a} T(1) \\
&T(1) \quad n^{\log_b a} T(1) \\
&\vdots \\
&h = \log_b n \\
&f(n) \quad a \quad f(n) \\
&f(n/b) \quad f(n/b) \quad \cdots \quad f(n/b) \quad a f(n/b) \\
&f(n/b^2) \quad f(n/b^2) \quad \cdots \quad f(n/b^2) \quad a^2 f(n/b^2) \\
\end{align*}
\]

CASE 2: \(k = 0 \) The weight is approximately the same on each of the \(\log_b n \) levels.

\[\Theta(n^{\log_b a} \log n)\]
Idea of master theorem

Recursion tree:

\[f(n) \quad a \quad f(n) \]
\[\quad f(n/b) \quad f(n/b) \quad \cdots \quad f(n/b) \quad af(n/b) \]
\[\quad \quad f(n/b^2) \quad f(n/b^2) \quad \cdots \quad f(n/b^2) \quad a^2 f(n/b^2) \]
\[\vdots \]
\[T(1) \]

CASE 3: The weight decreases geometrically from the root to the leaves. The root holds a constant fraction of the total weight.

\[n^{\log_b a} T(1) \quad \Theta(f(n)) \]