Introduction to computer Programming

LECTURE 10
Dynamic Programming
• Longest common subsequence
• Optimal substructure
• Overlapping subproblems
Dynamic programming

Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)

- Given two sequences $x[1 \ldots m]$ and $y[1 \ldots n]$, find a longest subsequence common to them both.
Dynamic programming

Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)

- Given two sequences $x[1 \ldots m]$ and $y[1 \ldots n]$, find a longest subsequence common to them both.

 “a” not “the”
Dynamic programming

Design technique, like divide-and-conquer.

Example: *Longest Common Subsequence (LCS)*

- Given two sequences \(x[1 \ldots m]\) and \(y[1 \ldots n]\), find a longest subsequence common to them both.

 “\(a\)” not “\(the\)”

\[
\begin{align*}
x & : \text{A B C B D A B} \\
y & : \text{B D C A B A}
\end{align*}
\]
Dynamic programming

Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)

• Given two sequences $x[1 \ldots m]$ and $y[1 \ldots n]$, find a longest subsequence common to them both.

 “a” not “the”

 \[
 x: \text{A B C B D A B} \\
 y: \text{B D C A B A}
 \]

 $BCBA = \text{LCS}(x, y)$

 functional notation, but not a function
Brute-force LCS algorithm

Check every subsequence of $x[1 \ldots m]$ to see if it is also a subsequence of $y[1 \ldots n]$.

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson
Brute-force LCS algorithm

Check every subsequence of $x[1 \ldots m]$ to see if it is also a subsequence of $y[1 \ldots n]$.

Analysis

- Checking = $O(n)$ time per subsequence.
- 2^m subsequences of x (each bit-vector of length m determines a distinct subsequence of x).

Worst-case running time = $O(n2^m)$ = exponential time.
Towards a better algorithm

Simplification:

1. Look at the *length* of a longest-common subsequence.
2. Extend the algorithm to find the LCS itself.
Towards a better algorithm

Simplification:

1. Look at the length of a longest-common subsequence.
2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence s by $|s|$.
Towards a better algorithm

Simplification:

1. Look at the length of a longest-common subsequence.
2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence s by $|s|$.

Strategy: Consider prefixes of x and y.

- Define $c[i, j] = |LCS(x[1 \ldots i], y[1 \ldots j])|$.
- Then, $c[m, n] = |LCS(x, y)|$.
Recursive formulation

Theorem.

\[c[i,j] = \begin{cases}
 c[i-1,j-1] + 1 & \text{if } x[i] = y[j], \\
 \max\{c[i-1,j], c[i,j-1]\} & \text{otherwise.}
\end{cases} \]
Recursive formulation

Theorem.

\[c[i, j] = \begin{cases}
 c[i-1, j-1] + 1 & \text{if } x[i] = y[j], \\
 \max \{ c[i-1, j], c[i, j-1] \} & \text{otherwise.}
\end{cases} \]

Proof. Case \(x[i] = y[j] \):

\[x: \quad \begin{array}{cccc}
 1 & 2 & \ldots & m \\
\end{array} \]

\[y: \quad \begin{array}{cccc}
 1 & 2 & \ldots & n \\
\end{array} \]

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson
Recursive formulation

Theorem.

\[
c[i, j] = \begin{cases}
 c[i-1, j-1] + 1 & \text{if } x[i] = y[j], \\
 \max\{c[i-1, j], c[i, j-1]\} & \text{otherwise}.
\end{cases}
\]

Proof. Case \(x[i] = y[j]\):

Let \(z[1 \ldots k] = \text{LCS}(x[1 \ldots i], y[1 \ldots j])\), where \(c[i, j] = k\). Then, \(z[k] = x[i]\), or else \(z\) could be extended. Thus, \(z[1 \ldots k-1]\) is CS of \(x[1 \ldots i-1]\) and \(y[1 \ldots j-1]\).
Claim: $z[1 \ldots k-1] = \text{LCS}(x[1 \ldots i-1], y[1 \ldots j-1])$. Suppose w is a longer CS of $x[1 \ldots i-1]$ and $y[1 \ldots j-1]$, that is, $|w| > k-1$. Then, cut and paste: $w \, || \, z[k]$ (w concatenated with $z[k]$) is a common subsequence of $x[1 \ldots i]$ and $y[1 \ldots j]$ with $|w \, || \, z[k]| > k$. Contradiction, proving the claim.
Proof (continued)

Claim: \(z[1 \ldots k-1] = \text{LCS}(x[1 \ldots i-1], y[1 \ldots j-1]) \). Suppose \(w \) is a longer CS of \(x[1 \ldots i-1] \) and \(y[1 \ldots j-1] \), that is, \(|w| > k-1 \). Then, **cut and paste:** \(w || z[k] \) (\(w \) concatenated with \(z[k] \)) is a common subsequence of \(x[1 \ldots i] \) and \(y[1 \ldots j] \) with \(|w || z[k]| > k \). Contradiction, proving the claim.

Thus, \(c[i-1, j-1] = k-1 \), which implies that \(c[i, j] = c[i-1, j-1] + 1 \).

Other cases are similar. □
Dynamic-programming hallmark #1

Optimal substructure
An optimal solution to a problem (instance) contains optimal solutions to subproblems.
Dynamic-programming hallmark #1

Optimal substructure
An optimal solution to a problem (instance) contains optimal solutions to subproblems.

If \(z = \text{LCS}(x, y) \), then any prefix of \(z \) is an LCS of a prefix of \(x \) and a prefix of \(y \).
Recursive algorithm for LCS

\[
\text{LCS}(x, y, i, j) \\
\quad \text{if } x[i] = y[j] \\
\quad \quad \text{then } c[i, j] \leftarrow \text{LCS}(x, y, i-1, j-1) + 1 \\
\quad \text{else } c[i, j] \leftarrow \max \{ \text{LCS}(x, y, i-1, j), \\
\quad \quad \quad \text{LCS}(x, y, i, j-1) \}
\]
Recursive algorithm for LCS

\[
\text{LCS}(x, y, i, j) =
\begin{align*}
\text{if } x[i] &= y[j] \\
\text{then } c[i, j] &\leftarrow \text{LCS}(x, y, i-1, j-1) + 1 \\
\text{else } c[i, j] &\leftarrow \max \{ \text{LCS}(x, y, i-1, j), \text{LCS}(x, y, i, j-1) \}
\end{align*}
\]

Worst-case: $x[i] \neq y[j]$, in which case the algorithm evaluates two subproblems, each with only one parameter decremented.
Recursion tree

$m = 3, n = 4$:
Recursion tree

\(m = 3, \ n = 4: \)

Height = \(m + n \) \(\Rightarrow \) work potentially exponential.
Recursion tree

$m = 3, n = 4$:

Height $= m + n \Rightarrow$ work potentially exponential, but we’re solving subproblems already solved!
Dynamic-programming hallmark #2

Overlapping subproblems
A recursive solution contains a “small” number of distinct subproblems repeated many times.
Dynamic-programming hallmark #2

Overlapping subproblems
A recursive solution contains a “small” number of distinct subproblems repeated many times.

The number of distinct LCS subproblems for two strings of lengths m and n is only mn.

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson
Memoization algorithm

Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.
Memoization algorithm

Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.

\[
\text{LCS}(x, y, i, j)
\]

if \(c[i, j] = \text{NIL} \)

then if \(x[i] = y[j] \)

then \(c[i, j] \leftarrow \text{LCS}(x, y, i-1, j-1) + 1 \)

else \(c[i, j] \leftarrow \max\{ \text{LCS}(x, y, i-1, j), \text{LCS}(x, y, i, j-1) \} \)

\]
Memoization algorithm

Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.

\[
\text{LCS}(x, y, i, j)\
\begin{align*}
\text{if } c[i, j] &= \text{NIL} \\
\text{then if } x[i] &= y[j] \\
&\quad \text{then } c[i, j] \leftarrow \text{LCS}(x, y, i-1, j-1) + 1 \\
&\quad \text{else } c[i, j] \leftarrow \max \{ \text{LCS}(x, y, i-1, j), \\
&\quad \quad \quad \text{LCS}(x, y, i, j-1) \} \\
\end{align*}
\]

Time = \(\Theta(mn)\) = constant work per table entry.
Space = \(\Theta(mn)\).
Dynamic-programming algorithm

Idea:
Compute the table bottom-up.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>B</th>
<th>D</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
Dynamic-programming algorithm

Idea:
Compute the table bottom-up.

Time $= \Theta(mn)$.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>B</th>
<th>D</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson
Dynamic-programming algorithm

Idea:
Compute the table bottom-up.

Time = $\Theta(mn)$.

Reconstruct LCS by tracing backwards.
Dynamic-programming algorithm

Idea:
Compute the table bottom-up.

Time = \(\Theta(mn) \).

Reconstruct LCS by tracing backwards.

Space = \(\Theta(mn) \).

Exercise:
\(O(\min\{m, n\}) \).