
Google File System

2017 fall DIP
Heerak lim, Donghun Koo

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung Google∗

1

Agenda

• Introduction

• Design overview

• Systems interactions

• Master operation

• Fault tolerance and diagnosis

• Measurements

• Experiences

• Conclusions

2

Introduction

Design choices :

1. Component failures are the norm rather than the exception.

2. Files are huge by traditional standards. Multi-GB files are comm
on.

3. Most files are mutated by appending new data rather than over
writing existing data.

4. Co-designing the applications and the file system API benefits t
he overall system by increasing our flexibility.

3

Agenda

• Introduction

• Design overview
– Assumptions
– Interface
– Architecture
– Single master
– Chunk size
– Metadata

• Systems interactions

• Master operation

• Fault tolerance

• Measurements

• Conclusions

4

Design overview

• Assumptions

 inexpensive commodity components that often fail

 Few million files, typically 100MB or larger

 Large streaming reads, small random reads

 Sequential writes, append data

 Multiple concurrent clients that append to the same file

 High sustained bandwidth more important than low latency

6

Design overview

• Interface
– Familiar file system interface API but not POSIX compatible

– Usual files operations:

• create

• delete

• open

• close

• read

• write

– Enhanced files operations:

• snapshot (copy-‐on-‐write)

• record append (concurrency atomic append support)

Design overview
• Architecture

– Single GFS master ! and multiple GFS chunkservers accessed by multiple GFS clients

– GFS Files are divided into fixed-‐size chunks (64MB)

– Each chunk is identified by a globally unique “chunk handle” (64 bits)

– Chunkservers store chunks on local disks as Linux file

– For reliability each chunk is replicated on multiple chunkservers (default = 3)

7

1

2

3

4

Design overview
• Architecture

– GFS master

• maintains all file system metadata

– namespace, access control, chunk mapping & locations (fileschunksreplicas)

• send periodically heartbeat messages with chunkservers

– instructions + state monitoring

8

1

2

3

4

Design overview
• Architecture

– GFS client

• Library code linked into each applications

• Communicates with GFS master for metadata operations (control plane)

• Communicates with chunkservers for read/write operations (data plane)

9

1

2

3

4

10

Design overview

• Single master
– Design simplification

– Master makes chunk placement and replication decisions

1

2

3

4

11

Design overview

• Chunk size
– 64MB

– Stored as a plain Linux file on chunkserver

– Why large chunk size ?

• Advantages
– Reduces client interaction with GFS master for chunk location

information

– Reduces size of metadata stored on master (full in-‐memory)

– Reduces network overhead by keeping persistent TCP

connections to the chunkserver over an extended period of time

• Disadvantages
– Small files can create hot spots on chunkservers if many clients

accessing the same file

12

Design overview

• Metadata
– 3 types of metadata

• File and chunk namespaces
• Mapping from files to chunks

• Locations of each chunks’replicas

(in-‐memory + operation log)

(in-‐memory + operation log)

(in-‐memoryonly)

– All metadata is kept in GFS master’s memory (RAM)
• Periodic scanning to implement chunk garbage collection, re-‐replication (when chunks

erver failure) and chunk migration to balance load and disk space usage across chunk
servers

– Operation log file
• The logical time line that defines the order of concurrent operations
• Contains only metadata Namespaces + Chunk mapping
• kept on GFS master’s local disk and replicated on remote machines
• No persistent record for chunk locations (master polls chunkservers at startup)
• GFS master checkpoint its state (B-‐tree) whenever the log grows beyond a certain size

Agenda

14

• Introduction
• Design overview
• Systems interactions

– Leases and mutation order
– Data flow
– Atomic record appends
– Snapshot

• Master operation
• Fault tolerance and diagnosis
• Measurements
• Experiences
• Conclusions

Systems interactions

• Leases and mutation order
– Each mutation (write or append) is performed at all the chunk’s replicas

– Leases used to maintain a consistent mutation order across replicas

• Master grants a chunk lease to one of the replicas:(the primary replica)

• The primary replica picks a serial order for all mutations to the chunk

• All replicas follow this order when applying mutations

– Master may sometimes try to revoke a lease before it expires
(when master wants to disable mutations on a file that is being renamed)

15

Systems interactions
Write control and Data flow

1. Client ask master for primary and
secondaries replicas info for a chunk

1. Master replies with replicas identity
(client put info in cache with timeout)

1. Client pushes Data to all replicas (pipelined f
ashion) Each chunkserver store the Data in a
n internal LRU buffer cache until Data is used
or aged out

2. One all replicas have acknowledged receivi-
ng the data, client send a write request to
the primary replica

3. Primary replica forward the write request to
all secondary replicas that applies mutations
in the same serial number order assigned by
the primary

4. Secondary replicas acknowledge the primar
y that they have completed the operation

5. The primary replica replies to the client. Any
errors encountered at any of the replicas are
reported to the client.

16

Systems interactions

• Data flow
• To utilize high bandwidth
• To avoid network bandwidth and high-latency links

– GFS decouples the Data flow from Control flow

-> Looks linear

– Each machine forwards the data to the closest machine in the

network topology that has not received it

closest: Our network topology is simple enough that “distances” can be accurately estimated from IP addresses.

– GFS minimize the latency by pipelining the data transfer over TCP connections

17

Systems interactions

• Atomic record appends(called record append)
– In a record append, client specify only the data, and GFS choose the offset

when appending the data to the file (concurrent atomic record appends are
serializable)

Algorithm of atomic record append

• Client pushes the data to all replicas of the last chunk of the file

• Client sends the append request to the primary

• Primary checks to see if data causes chunk to exceed the maximize size
Yes-> pads chunk to the maximum size and tells secondaries to do same

then tells client to retry on the next chunk.

No-> the primary appends data to its replicas, tells secondaries to write
at the exact offset where is has.

18

Systems interactions

• Snapshot operation
– Make a instantaneously copy of a file or a directory tree by

using standard copy-‐on-‐write techniques

 Revoke any outstanding leases on the chunk to

snapshot

 Logs the snapshot operation to disk and duplicates

the metadata

 If the client wants to write, it creates a new chunk

and tell secondary to do same

Agenda

• Introduction
• Design overview
• Systems interactions
• Master operation

– Namespace management and locking
– Replica placement
– Creation, re-‐replication, rebalancing
– Garbage collection

• Fault tolerance
• Measurements
• Conclusions

20

• GFS allows multiple operations to be active and uses locks to
ensure serialization

• Namespace is represented as a lookup table mapping full
pathnames to metadata

• Each node has an associated read-write lock and each master
operation acquires locks before it runs

• Locks are acquired in a total order to prevent deadlock

21

Namespace management
and locking

21

Replicas

• GFS spreads chunk replicas across racks
– This ensures that some replicas will survive even if an entire rack is
damaged

– This can exploit the aggregate bandwidth of multiple racks

• Replicas are created for chunk creation, re-replication,
and rebalancing
– Places new replicas on chunkservers with below-average disk
space utilization

– Re-replicates a chunk when the number of available replicas falls
below a user-specified goal

– Rebalances replicas periodically for better disk space and load
balancing

22

Garbage Collection

• GFS reclaims the storage for deleted files lazily via garbage
collection at the file and chunk levels

– File Level

– Master logs the deletion and renames the file to a hidden name that
includes the deletion timestamp

– Hidden files are removed if they have existed for more than 3 days

– Chunk Level

– Each chunkserver reports a subset of chunks it has and master identi
fies and replies with orphaned chunks

– Each chunkserver deletes orphaned chunks

Agenda

• Introduction

• Design overview

• Systems interactions

• Master operation

• Fault tolerance
– High Availability

– Data Integrity

• Measurements

• Conclusions

28

29

High availability

• Fast recovery
– Master and chunkserver are designed to restore their state and start

in seconds

• Chunk replication
– Each chunk is replicated on multiple chunkservers on different racks

– Users can specify different replication levels (default is 3)

• Master replication
– Operation logs and checkpoints are replicated on multiple machines

– One master process is in charge of all mutations and background activities

– Shadow masters provide read-only access to the file system when the
primary master is down

25

Data integrity

• Each chunkserver uses checksumming to detect data corruption
– A chunk is broken up into 64KB blocks

– Each block has a corresponding 32bit checksum

• Chunkserver verifies the checksum of data blocks for reads

• During idle period, chunkservers scan and verify the inactive
chunks

Agenda

• Introduction

• Design overview

• Systems interactions

• Master operation

• Fault tolerance

• Measurements
– Micro-‐benchmarks

– Real world clusters

• Conclusions

34

Micro-benchmarks
• Experiment Environment
– 1 master, 2 master replicas, 16 chunkservers with 16 clients

– Dual 1.4 GHz PIII processors, 2GB RAM, 2x80GB 5400 rpm disks, 100Mbps full-
deplex Ethernet

27

MasterReplica Replica

Chunkserver
#0

Chunkserver
#15…..…

Client
#0

Client
#15

…..…

Micro-benchmarks
• READS

– Each client read a randomly selected 4MB region 256 times (= 1 GB of data)
from a 320MB file

28

• Writes
– Each client writes 1GB data to a new file in a series of 1MB writes
– Each write involves 3 different replicas

• Record appends
– All clients append simultaneously to a single file

75-‐80%efficiency 50% efficiency ≈38% efficiency

Real world clusters
• Experiment Environment

– Cluster A
– Used for research and development
– Reads MBs ~ TBs data and writes the results back

– Cluster B
– Used for research and development
– Reads MBs ~ TBs data and writes the results back

R&D Production

Real world clusters

• Performance metrics for two GFS clusters
– Cluster B was in the middle of a burst write activity

– The read rates were much higher than the write rates

40

• Recovery time
– Killed a single chunckserver of cluster B

– Which had 15K chunks containing 600GB data
– All chunks were restored in 23.3 minutes

Conclusions

• GFS
– GFS treats Component failures as the norm rather than the

exception

– GFS optimizes for huge files mostly append to and then
read sequentially

– GFS provides fault tolerance by constant monitoring,
replicating crucial data and fast and automatic recovery
(+ checksum to detect data corruption)

– GFS delivers high aggregate throughput to many concurrent
readers and writers (by separating file system control from
data transfer)

31

