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Motivation
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Motivation

* Speedup S(p) is not linear with respect to
processor number p

* “many parallel applications achieve maximum speedup
at some intermediate allocation”

* Dynamic measurements are needed
* it varies over tasks (also time)

* “No static allocation may be optimal for the entire
execution lifetime of a job”



Contents

* Motivation

* Experimental Environments

e Self-Tuning Algorithm

* Multi-Phase Self-Tuning Algorithm

 Conclusion



Experimental Environments

* Machine
* KSR-2 COMA shared memory multiprocessor

e Parallelization

* KSR KAP preprocessor
* KSR PRESTO runtime system and CThreads

* Monitoring
* H/W monitoring unit — the event monitor

e Benchmarks



Runtime Measurement

* Core metric: Efficiency E(p) and Speedup S(p)

Bp) = 1= WI®) - UT(R) _ IT(P) ~ PST(p)

WT(p) WT(p) WT(p)

System overhead Idleness Communication
(= Processor stall)

S(p) = p x E(p)
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Self-Tuning Algorithm

* A basic self-tuning algorithm using MGS

* (Target) S(p) : [1,P] = R
* First, narrow the range as below
* [1,P]
* [S(P),P] practically, (1 < S(P) < P)
* Then apply MGS manner optimization to the interval

(case 1) (case 2)



Self-Tuning Algorithm

* But, speedup is also a function of time!

* A change-driven self-tuning algorithm

* it reinitiate speedup when significant change in
efficiency occurred

* A time-driven self-tuning algorithm

* it reinitiate speedup periodically and when significant
change occurred



Self-Tuning — Performance
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Multi-Phase Self-Tuning Algorithm

loop {

dojob 1

do job 2



Multi-Phase Self-Tuning Algorithm

* Speedup S(p) of each phase may be maximized in
different processor number p

* Extension of the optimization problem
* For each iteration, there are N many phases

* Find a processor allocation vector (pq, p5, ..., py) Which
maximizes total speedup S = Y Spnase Ppnase)



Multi-Phase Self-Tuning Algorithm

* Independent multi-phase self-tuning algorithm

e apply the basic self-tuning alg. to each phase
independently

* but, phases are dependent each other

* Inter-dependent multi-phase self-tuning algorithm
* randomized approach

initial
candidate
vector

=

=

=

accepted
vector



Multi-Phase Self-Tuning — Performance
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Conclusion

* “vroposed a technique to automatically regulate
the number of processors used in the execution if a
parallel program so as to maximize its speedup”

* “simple search procedures, guided by the runtime
measurements, can automatically select
appropriate numbers of processors”

e “self-tuning is especially promising for compiler-
parallelized applications”



