
Maximizing Speedup through Self-
Tuning of Processor Allocation

Hyungmo Kim
SNUCSE, 2017-26932

12 Dec 2017

Contents

• Motivation

• Experimental Environments

• Self-Tuning Algorithm

• Multi-Phase Self-Tuning Algorithm

• Conclusion

Motivation

speedup
𝑆(𝑝)

processors
𝑝

ideal case

practical case

Motivation

• Speedup 𝑆(𝑝) is not linear with respect to
processor number 𝑝
• “many parallel applications achieve maximum speedup

at some intermediate allocation”

• Dynamic measurements are needed
• it varies over tasks (also time)

• “No static allocation may be optimal for the entire
execution lifetime of a job”

Contents

• Motivation

• Experimental Environments

• Self-Tuning Algorithm

• Multi-Phase Self-Tuning Algorithm

• Conclusion

Experimental Environments

• Machine
• KSR-2 COMA shared memory multiprocessor

• Parallelization
• KSR KAP preprocessor
• KSR PRESTO runtime system and CThreads

• Monitoring
• H/W monitoring unit – the event monitor

• Benchmarks
• iteration { parallel region { do jobs } }

Runtime Measurement

• Core metric: Efficiency 𝐸(𝑝) and Speedup 𝑆(𝑝)

System overhead Idleness Communication
(= Processor stall)

Contents

• Motivation

• Experimental Environments

• Self-Tuning Algorithm

• Multi-Phase Self-Tuning Algorithm

• Conclusion

Self-Tuning Algorithm

• A basic self-tuning algorithm using MGS

• (Target) 𝑆 𝑝 ∶ [1, 𝑃] → 𝑅
• First, narrow the range as below

• 1, 𝑃

• 𝑆(𝑃), 𝑃 practically, 1 < 𝑆 𝑃 < 𝑃

• Then apply MGS manner optimization to the interval

(case 1) (case 2)

Self-Tuning Algorithm

• But, speedup is also a function of time!

• A change-driven self-tuning algorithm
• it reinitiate speedup when significant change in

efficiency occurred

• A time-driven self-tuning algorithm
• it reinitiate speedup periodically and when significant

change occurred

Self-Tuning – Performance

No tuning
Basic self-tuning
Change-driven self-tuning
Time-driven self-tuning

Contents

• Motivation

• Experimental Environments

• Self-Tuning Algorithm

• Multi-Phase Self-Tuning Algorithm

• Conclusion

Multi-Phase Self-Tuning Algorithm

loop {

parallel { // phase 1

do job 1

}

parallel { // phase 2

do job 2

}

}

Multi-Phase Self-Tuning Algorithm

• Speedup 𝑆(𝑝) of each phase may be maximized in
different processor number 𝑝

• Extension of the optimization problem
• For each iteration, there are N many phases

• Find a processor allocation vector (𝑝1, 𝑝2, … , 𝑝𝑁) which
maximizes total speedup 𝑆 = σ𝑆𝑝ℎ𝑎𝑠𝑒(𝑝𝑝ℎ𝑎𝑠𝑒)

Multi-Phase Self-Tuning Algorithm

• Independent multi-phase self-tuning algorithm
• apply the basic self-tuning alg. to each phase

independently

• but, phases are dependent each other

• Inter-dependent multi-phase self-tuning algorithm
• randomized approach

…
initial
candidate
vector

accepted
vector

Multi-Phase Self-Tuning – Performance

No tuning
Basic self-tuning
Independent multi-phase self-tuning
Inter-dependent multi-phase self-tuning

Contents

• Motivation

• Experimental Environments

• Self-Tuning Algorithm

• Multi-Phase Self-Tuning Algorithm

• Conclusion

Conclusion

• “proposed a technique to automatically regulate
the number of processors used in the execution if a
parallel program so as to maximize its speedup”

• “simple search procedures, guided by the runtime
measurements, can automatically select
appropriate numbers of processors”

• “self-tuning is especially promising for compiler-
parallelized applications”

