Maximizing Speedup through Self-
Tuning of Processor Allocation

Hyungmo Kim
SNUCSE, 2017-26932
12 Dec 2017

Contents

* Motivation

* Experimental Environments

e Self-Tuning Algorithm

* Multi-Phase Self-Tuning Algorithm

 Conclusion

Motivation

A
speedup

S(p)

processors

» p

Motivation

* Speedup S(p) is not linear with respect to
processor number p

* “many parallel applications achieve maximum speedup
at some intermediate allocation”

* Dynamic measurements are needed
* it varies over tasks (also time)

* “No static allocation may be optimal for the entire
execution lifetime of a job”

Contents

* Motivation

* Experimental Environments

e Self-Tuning Algorithm

* Multi-Phase Self-Tuning Algorithm

 Conclusion

Experimental Environments

* Machine
* KSR-2 COMA shared memory multiprocessor

e Parallelization

* KSR KAP preprocessor
* KSR PRESTO runtime system and CThreads

* Monitoring
* H/W monitoring unit — the event monitor

e Benchmarks

Runtime Measurement

* Core metric: Efficiency E(p) and Speedup S(p)

Bp) = 1= WI®) - UT(R) _ IT(P) ~ PST(p)

WT(p) WT(p) WT(p)

System overhead Idleness Communication
(= Processor stall)

S(p) = p x E(p)

Contents

* Motivation

* Experimental Environments

* Self-Tuning Algorithm

* Multi-Phase Self-Tuning Algorithm

 Conclusion

Self-Tuning Algorithm

* A basic self-tuning algorithm using MGS

* (Target) S(p) : [1,P] = R
* First, narrow the range as below
* [1,P]
* [S(P),P] practically, (1 < S(P) < P)
* Then apply MGS manner optimization to the interval

(case 1) (case 2)

Self-Tuning Algorithm

* But, speedup is also a function of time!

* A change-driven self-tuning algorithm

* it reinitiate speedup when significant change in
efficiency occurred

* A time-driven self-tuning algorithm

* it reinitiate speedup periodically and when significant
change occurred

Self-Tuning — Performance

Speadup

Speadup

Bamas
45 L e B) S M
40 by
35
30
25 %
2 No lunfﬂ% —] 5;'
15 BST -+ 4
10 C5T -8-- |
TET ~mee
5 -
o 1 1 1 1 L 1] L 1
5 10 15 20 25 30 35 40 45 50
Number of Available Processors
DYFESM
2 T L} L} T 1 T T T L}
1.6 Nniunin% -
15 851 -
: G8T -\--
14 - TET s
=
<
-]
3
h

0
0 5 10 15 20 25 30 35 40 45 50

Numbar of Available Processors

L L L 1L L 1 1 L

5 10 16 20 25 30 35 40 45 BD
Number of Available Processors

1 1]) 1] L 1

0
¢ 5 10 15 20 25 20 35 40 45 50

Number of Available Processors

Speedup

i 1 1

o]
0 5 10 15 20 25 30 35 40 45 5O
Numbser of Available Processors

No tuning

Basic self-tuning
Change-driven self-tuning
Time-driven self-tuning

Contents

* Motivation

* Experimental Environments

e Self-Tuning Algorithm

* Multi-Phase Self-Tuning Algorithm

 Conclusion

Multi-Phase Self-Tuning Algorithm

loop {

dojob 1

do job 2

Multi-Phase Self-Tuning Algorithm

* Speedup S(p) of each phase may be maximized in
different processor number p

* Extension of the optimization problem
* For each iteration, there are N many phases

* Find a processor allocation vector (pq, p5, ..., py) Which
maximizes total speedup S = Y Spnase Ppnase)

Multi-Phase Self-Tuning Algorithm

* Independent multi-phase self-tuning algorithm

e apply the basic self-tuning alg. to each phase
independently

* but, phases are dependent each other

* Inter-dependent multi-phase self-tuning algorithm
* randomized approach

initial
candidate
vector

=

=

=

accepted
vector

Multi-Phase Self-Tuning — Performance

Speedup

2 == M W B R g =

Grav (Smal! Data Set)

No tuning —»—

Basic Self-tuning -—+--
IMPST -&--

DMPST -

1 [2 q L 1 1 |

[
0 5
Number of &vailabls Processors

No tuning
Basic self-tuning

10 15 20 25 20 35 40 45 50

Speadup

Grav [Large Data Set)

12 ¥ H ¥ T T T T T T
10 | i
,s -
g

Mo tuning —+—
4 Basic Eal-tunln? 4+ 4

IMPST -@--

2 DMPSET -+t
u L] L L 1 L] |]

6 5 10 15 20 25 30 35 40 45
Number of Available Processors

Independent multi-phase self-tuning
Inter-dependent multi-phase self-tuning

50

Contents

* Motivation

* Experimental Environments

e Self-Tuning Algorithm

* Multi-Phase Self-Tuning Algorithm

* Conclusion

Conclusion

* “vroposed a technique to automatically regulate
the number of processors used in the execution if a
parallel program so as to maximize its speedup”

* “simple search procedures, guided by the runtime
measurements, can automatically select
appropriate numbers of processors”

e “self-tuning is especially promising for compiler-
parallelized applications”

