Outline

- Clock
 - Logical Clocks & Ordering of Events
 - Vector Clocks
- Q&A
Partial Ordering of Events

- **Assumptions**
 - System Consists of N Processes:
 \[p_i \quad (i = 1, \ldots, N) \]
 - System Is Composed of a Collection of Events
 - Examples of events
 - Execution of a subprogram
 - Execution of a single machine instruction
 - Sending or receiving a message

\[
\text{history}(p_i) = h_i = \left\{ e_i^k \mid k = 1, \ldots \right\} \quad (i = 1, \ldots, N)
\]
Partial Ordering of Events [Lamport78]

“Happened Before” Relation (→)

1. \(k < l \implies (if) \quad e_i^k \rightarrow e_i^l \quad (i = 1, \ldots, N) \)

2. \(e_i = \text{send}(m), e_j = \text{receive}(m) \) for Message \(m \)
 \(\implies e_i \rightarrow e_j \)

3. \(e \rightarrow e' \land e' \rightarrow e'' \implies e \rightarrow e'' \)

* \(e \not\rightarrow e \)

Concurrent Relation (Ⅱ)

\(e \not\rightarrow e * \land e * \not\rightarrow e \iff e \parallel e * \)

Transitive

Irreflexive
Logical Clocks [Lamport78]

Ways of Assigning Numbers to Events

\[LC_i(e), \text{where } e \text{ is an event in process } p_i \]

Clock (Correctness) Condition

\[e \rightarrow e^* \implies LC(e) < LC(e^*) \]

- Satisfied if the following two conditions hold:

1. \(k < l \implies LC(e^k_i) < LC(e^l_i) \) \((i = 1, \ldots, N)\)
2. \(e_i = \text{send}(m), e_j = \text{receive}(m) \text{ for Message } m \)
 \[\implies LC(e_i) < LC(e_j) \]
Logical Clocks (Cont’d)[Lamport78]

Implementation Rules

1. $LC(e_i^{k+1}) = LC(e_i^k) + 1$ for Successive Events e_i^k, e_i^{k+1} ($i = 1, \ldots, N$)

2. $e_i = send(m)$, $e_j^l = receive(m)$ for Message m

 $\Rightarrow \quad t = LC(e_i) \in m, \quad LC(e_j^l) = \max\{LC(e_j^{l-1}), t\} + 1$

Figure 14.5 on Page 623
Ordering the Events Totally [Lamport78]

Total Ordering ($\Rightarrow_{t.o.}$)

$$e \Rightarrow_{t.o.} e^* \iff LC_i(e) < LC_j(e^*) \lor \{LC_i(e) = LC_j(e^*) \land i < j\}$$

$$e \rightarrow e^* \Rightarrow e \Rightarrow_{t.o.} e^*$$

- Use Case: Mutual Exclusion Problem
 - Processes sharing a single resource
 - (1) A process using it must release it before the following use
 - (2) The processes must use it in their request order
 - (3) If it is eventually released, every request is eventually granted
Nontrivial Scheduling Problem

- The Requests Cannot Be Granted in the Order They Are Received

Scheduler

This Earlier Request Is Received Later
Ordering the Events Totally (Cont’d)

[Lamport78] Nontrivial Scheduling Problem

- Assumptions for an Algorithm
 - In-order message delivery
 - Each process’ request queue
 - Initially containing a request with T0:P0

- Algorithm
 - Pi sends a Tm:Pi Req to all others and puts it in the queue
 - Each receiver puts it in the queue and sends a timestamped Ack to the requestor
 - When releasing the resource, Pi removes the Req and sends a timestamped Rel to all others
 - Each receiver removes Pi’s Req from its queue
 - The Tm:Pi Req is granted if it is the first in ⇒, and Pi has received a message from all others timestamped later than Tm
Vector Clocks

Shortcomings of Lamport’s Logical Clock

\[LC_i(e) < LC_j(e^*) \implies e \rightarrow e^* \]
Vector Clocks (Cont’d)

- Implementation Rules

1. \(VC_i[j] = 0 \) (\(i, j = 1, ..., N \))

2. \(VC_i(e_i^{k+1})[i] = VC_i(e_i^k)[i] + 1 \) for Successive Events \(e_i^k, e_i^{k+1} \) (\(i = 1, ..., N \))

3. \(e_i = \text{send}(m), e_j^l = \text{receive}(m) \) for Message \(m \)

\[t = VC_i(e_i) \in m, VC_j(e_j^l) = \max \{VC_j(e_j^{l-1}), t\} + j \]

Figure 14.7 on Page 626
Vector Clocks (Cont’d)

Vector-Timestamp Comparisons

\[VC = VC \ast \iff VC[j] = VC^*[j] \ (j = 1, \ldots, N) \]
\[VC \leq VC \ast \iff VC[j] \leq VC^*[j] \ (j = 1, \ldots, N) \]
\[VC < VC \ast \iff VC \leq VC^* \land VC \neq VC^* \]

Properties

\[e \rightarrow e^* \iff VC(e) < VC(e^*) \]

Hints for the Proof

\[e \parallel e^* \Rightarrow \neg\{VC(e) \leq VC(e^*) \lor VC(e) \geq VC(e^*)\} \]
(Note That \(VC_i[j] \leq VC_j[j] \))
Vector Clocks

Properties

\[e_i \rightarrow e_j \iff VC_i[i] \leq VC_j[i], \text{ where } i \neq j \]

Hint for the Proof

\[(\text{Note That } VC_i[j] \leq VC_j[j])\]

\[\exists k(\neq j) \text{ s.t. } VC_i[k] < VC_j[k] \]

\[\Rightarrow \exists e_k \text{ s.t. } (e_k \leftrightarrow e_i) \land (e_k \rightarrow e_j) \]
Vector Clocks (Cont’d)

Properties

\[\exists k (\neq j) \text{ s.t. } VC_i(e_i)[k] < VC_j(e_j)[k] \]
\[\Rightarrow \exists e_k (\neq e_i) \text{ s.t. } (e_k \not\rightarrow e_i) \land (e_k \rightarrow e_j) \]

Suppose That \(i = k \),

\[\exists k (\neq j) \text{ s.t. } VC_k(e_k\star)[k] < VC_j(e_j)[k] \]
\[\Rightarrow \exists e_k (\neq e_k\star) \text{ s.t. } (e_k \not\rightarrow e_k\star) \land (e_k \rightarrow e_j) \]
iff \[\exists e_k (\neq e_k\star) \text{ s.t. } e_k\star \rightarrow e_k \rightarrow e_j \]

\[\exists e_k (\neq e_k\star \land k \neq j) \text{ s.t. } e_k\star \rightarrow e_k \rightarrow e_j \]
\[\Rightarrow VC_k(e_k\star)[k] < VC_j(e_j)[k] \]
Vector Clocks (Cont’d)

Properties

\[\forall (k \neq j), \ VC_k(e_k^*)[k] \geq VC_j(e_j)[k] \]

\[\Rightarrow \neg \{ \exists e_k (\neq e_k^*) \text{ s.t. } e_k^* \rightarrow e_k \rightarrow e_j \} \]

If the Monitoring Process Keeps the Value of the k-th Elt of VC from Pk, It Can Decide Whether There Is No Event That Happened before a Given Event.