
©Copyrights 2017 Eom, Hyeonsang All Rights Reserved

Distributed Information 
Processing

10th Lecture

Eom, Hyeonsang (엄현상)
Department of Computer Science         

& Engineering
Seoul National University



Outline

 Distributed File Systems
Google Architecture

 Q&A



Google Overall Architecture

URL Server
Crawler

Store Server

Indexer

Sorter

Google
Web Server

URLs Web Pages

Storing Full HTML Pages

Documents

Barrels

Hits

Set of Word 
Occurrences

Repository

HTML Each Has
a DocID

Pageranker



Google Basic Architecture

 Cluster Architecture with Unreliable PCs
Reliability in Software

 Using commodity PCs to build a high-end 
computing cluster
 Replicating services across machines
 Detecting and handling failures automatically

Aggregate Request Throughput
 Parallelizing Individual Requests



Google Service Architecture

 Multiple Clusters Distributed Worldwide 
with Each Cluster Having Thousands of 
Machines
DNS-Based System

 Selecting a cluster based on the user’s 
geographic proximity

 Multiple Google Web Servers (GWSs) in a 
Cluster
Hardware-Based Load Balancer

 Selecting a GWS

Load Balancing  



Google Query-Serving Architecture

Index Servers Documents Servers

Google Web Server Spell Checker

Ad Server

Documents Servers
Document Servers

Index Servers
Index Servers

HTML Request

Words

DocIDs

DocIDs DocInfo

HTML Response



Serving a Query
 Index Servers

 Consulting an Inverted Index Mapping Each Query 
Word to a List of Docs (Hit List)
 Search in parallel

 Each query is served by one machine or machines within a 
pool for each index piece (shard)

Determining the 
Order of Results  

Randomly Chosen; Replicated 
for Uninterrupted Service  

 Determining Relevant Docs by Intersecting the 
Resulting Hit Lists

 Computing the Relevance Score for Each Doc
 Producing an Ordered List of Docids



Serving a Query (Cont’d)

 Doc Servers
 Computing the Actual Title, URI, & Doc Summary for 

the Doc By Fetching the Doc with Each Docid
 Fetch in parallel

 Each computation is performed by a server within a pool (of 
multiple replicas) for each shard  

Chosen by a Load Balancer  

Randomly Chosen Docs 

 Spell Checker
 Ad Server

 Generating Relevant Advertisements



Key Observations

 Most Accesses Being Read-Only
 Relatively Infrequent Updates
 Safely Divertible Queries at Updates 

 Sidestepping many of consistency issues

 Much Inherent Parallelism in the Application
 Parallelizing the Search over Many Machines
 Parallelizing the Service
 Adding Machines for Capacity Increase and Index 

Growth

We Can Divide Computation Across More CPUs and Disks to Answer a Query Fast.

Quiz: Can We Increase the Number of Shards to Accommodate Slower CPUs?



Key Design Principles

 Software Reliability
 Tolerating Failures in Software

 Replication for Performance and Availability
 Replicating Services across Machines

 Low Price/Performance Rather than Peak 
Performance
 Using PCs with the Best Performance per Unit Price

 Low Cost Computation 
 Using Commodity PCs



Large Cluster vs Shared 
Memory (SM) Machines

Condition Cluster SM Machines

Low Comp-to-Comm Ratio

Dynamic Comm Patterns or Data Partitioning

High Management or S/W Licensing Cost

Balanceable Index Data and Computation

Frequent Component Failures

Extensive Automation or Monitoring       
Using In-House Software


	Distributed Information Processing� 10th Lecture
	Outline
	Google Overall Architecture
	Google Basic Architecture
	Google Service Architecture
	Google Query-Serving Architecture
	Serving a Query
	Serving a Query (Cont’d)
	Key Observations
	Key Design Principles
	Large Cluster vs Shared Memory (SM) Machines

