A Survey on Sensor Networks

Donghyun Kang, Dongkwon Lee
Contents

- Introduction
- Sensor Networks Communication Architecture
- Protocol Stack
 - Physical Layer
 - Data Link Layer
 - Network Layer
 - Transport Layer
 - Application Layer
- Conclusion
Introduction

- Recent advancement in wireless communications and electronics has enabled...

- Sensor Node
 - Consist of **sensing, data processing, and communicating components**
 - Cooperating – The nodes are fitted with an onboard processor
 - **Use processing abilities**
 - Low-cost, Low-power, Multifunctional, Small size
Introduction

- Sensor Network
 - Be composed of a large number of sensor nodes that are densely deployed
 - Position of sensor nodes need not be predetermined
 - Cooperate effort of sensor nodes
 - Wide range of applications are ensured
 - Health
 - Military
 - Home
Introduction

- Protocols for traditional wireless ad hoc network are not well suited to the sensor networks

<table>
<thead>
<tr>
<th>Feature</th>
<th>Sensor network</th>
<th>Traditional wireless ad hoc network</th>
</tr>
</thead>
<tbody>
<tr>
<td># of sensor nodes</td>
<td>Very large</td>
<td>Not that large</td>
</tr>
<tr>
<td>Density</td>
<td>Densely deployed</td>
<td>Low density</td>
</tr>
<tr>
<td>Failure</td>
<td>Prone to failures</td>
<td>Low failure</td>
</tr>
<tr>
<td>Topology</td>
<td>Frequently changed</td>
<td>Rarely changed</td>
</tr>
<tr>
<td>Communication</td>
<td>Broadcast communication</td>
<td>Point to point communication</td>
</tr>
<tr>
<td>Resource</td>
<td>Limited in power, computation capacities and memory</td>
<td>Not that limited</td>
</tr>
<tr>
<td>Global identification</td>
<td>May not have</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Contents

- Introduction
- Sensor Networks Communication Architecture
 - Overview
 - Design Factors
- Protocol Stack
 - Physical Layer
 - Data Link Layer
 - Network Layer
 - Transport Layer
 - Application Layer
- Conclusion
Sensor Networks Communication Architecture

- Overview
 - Sensor nodes
 - Sensor field
 - Sink
Sensor Networks Communication Architecture

- Many Design Factors
 - Fault Tolerance
 - Scalability
 - Production Costs
 - Hardware Constraints
 - Sensor Network Topology
 - Environment
 - Transmission Media
 - Power Consumption
Design Factors

- Fault Tolerance
 - Ability to sustain sensor network functionalities without any interruption due to sensor node failures

- Scalability
 - Hundreds ~ millions of sensor nodes

- Production Costs
Design Factors

- Hardware Constraints
 - Sensing unit
 - Sensors
 - Analog signal
 - ADC
 - Analog to Digital Converter
 - Processing unit
 - Transceiver unit
 - Power unit
 - Application-dependent components
 - Location finding system, mobilizer, power generator, ...
- Size (weight) & power constraint
Design Factors

- Sensor Network Topology
 - Pre-deployment & deployment
 - Post-deployment
 - Redeployment
- Environment
Design Factors

- Transmission Media
 - Radio
 - Infrared
 - Optical media (light)

- Power Consumption
 - Lifetime
 - Conservation & management
 - Power-aware protocols & algorithms
Contents

- Introduction
- Sensor Networks Communication Architecture
- Protocol Stack
 - Physical Layer
 - Data Link Layer
 - Network Layer
 - Transport Layer
 - Application Layer
- Conclusion
Protocol Stack

- **Layers**
 - **Physical Layer**
 - Transmission & receiving techniques
 - **Data Link Layer**
 - Medium access control protocol w/ considering constraints
 - **Network Layer**
 - Take care of routing the data supplied by the transport layer
 - **Transport Layer**
 - Help to maintain the flow of data
 - **Application Layer**
 - Application software
Protocol Stack

- **Planes**
 - **Power management plane**
 - Manage how a sensor node uses its power
 - **Mobility management plane**
 - Detect and register the movement of sensor nodes
 - **Task management plane**
 - Balance and schedule the sensing tasks
Contents

- Introduction
- Sensor Networks Communication Architecture
- Protocol Stack
 - Physical Layer
 - Data Link Layer
 - Network Layer
 - Transport Layer
 - Application Layer
- Conclusion
Physical Layer

- Be responsible for
 - Frequency selection
 - Carrier frequency generation
 - Signal detection
 - Modulation
 - Data encryption
- 915 MHz ISM band has been widely suggested for sensor networks
Physical Layer

- Signal propagation effects & Power Efficiency
 - Minimum output power (proportional to $distance^{2\sim4}$)
 - Multi-hop communication
- Modulation schemes
 - Binary modulation
 - M-ary modulation
- UWB(Ultra Wideband) / IR(Impulse Radio)
Contents

- Introduction
- Sensor Networks Communication Architecture
- Protocol Stack
 - Physical Layer
 - Data Link Layer
 - Medium Access Control (MAC)
 - Error Control
 - Network Layer
 - Transport Layer
 - Application Layer
- Conclusion
Data Link layer

- It ensures reliable point-to-point and point-to-multipoint connections in a communication network

- It is responsible for ...
 - Multiplexing of data streams
 - Data frame detection
 - **Medium access control (MAC)**
 - Two goals in a sensor network
 - The creation of network infrastructure
 - Share resources fairly and efficiently
 - Error control
MAC (Medium Access Control)

- Existing MAC Protocols Cannot Be Used
 - Existing MAC protocols
 - Versus Cellular system
 - Base station – mobile node <-> no central controlling agent
 - Goal: provision of high quality of service (QoS) & bandwidth efficiency
 - Power conservation is secondary important (Replenishing battery, unlimited power supplement) <-> it is primary importance in a sensor network
 - Versus Bluetooth and the mobile ad hoc network (MANET)
 - Bluetooth
 - Star network (master node – up to 7 slave nodes)
 - Transmission power: ~20dBm & transmission range: order of tens of meters
 - MANET
 - Goal: the provision of high QoS under mobile conditions
 - Power is not important (Replaceable battery)
 - <-> Less mobility rate, frequent topology change
 - <-> sensor network has more larger number of nodes.
 - <-> ~0dBm transmission power and less radio range
MAC (Medium Access Control)

- MAC for Sensor Networks
 - Demand-based schemes may be unsuitable for sensor networks
 - Large messaging overhead & link setup delay
 - *Fixed allocation and Random access version are suggested*
 - SMACS & EAR
 - CSMA-based Medium Access
 - Hybrid TDMA-FDMA based
- Power Saving Operation
SMACS and EAR

SMACS: Self-Organizing Medium Access Control for Sensor Networks
- Distributed infrastructure-building protocol
 - Enable nodes to discover their neighbors and establish transmission/reception schedules for global communication without any global or local master nodes
- Neighbor discovery and channel assignment phases are combined
 - Hear all their neighbors -> form a connected network
- Communication link – pair of time slots operating at a randomly chosen but fixed frequency <Power conservation>
 - Available bandwidth >> maximum data rate for sensor nodes
- No network wide synchronization

EAR: Eaves-drop-And-Register Algorithm
- Offer continuous service to the mobile nodes under both mobile and stationary conditions
- Decide when to drop connections while minimizing messaging overhead
- Transparent with SMACS; EAR + SMACS available
- Network is assumed to be mainly static and mobile node has a number of stationary nodes

Drawback
- Possibility that members already belonging to different subnets might never get connected
MAC (Medium Access Control)

- CSMA-Based Medium Access
 - CSMA: A carrier sense multiple access
 - Traditional CSMA-based schemes
 - Fundamental assumption of stochastically distributed traffic
 - Tend to support independent point-to-point flows
 - \textit{Must be able to support variable but highly correlated and dominantly periodic traffic}
 - Listening mechanism & backoff scheme
 - Constant listen period – energy efficient
 - Introduction of random delay \rightarrow Robustness against repeated collisions
 - Fixed window & backup schemes \rightarrow maintain proportional fairness
- ARC (Adaptive transmission rate control)
 - Achieve medium access fairness
 - Control the data origination rate of a node in order to allow the route-through traffic to propagate
 - Linear increase and multiplicative decrease approach
MAC (Medium Access Control)

- Hybrid TDMA/FDMA Based
 - T(F)DMA: Time/Frequency division multiple access
 - Assumption
 - System is made up of energy-constrained sensor nodes that communicate to a single nearby high-powered base station
 - The machine monitoring application of sensor networks with strict data latency requirements is considered
 - If the transmitter consumes more power → TDMA
 - If the receiver consumes more power → FDMA
MAC (Medium Access Control)

- Qualitative overview

<table>
<thead>
<tr>
<th>MAC protocol</th>
<th>Channel access mode</th>
<th>Sensor network specifics</th>
<th>Power conservation</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMACS and EAR [13]</td>
<td>Fixed allocation of duplex time slots at fixed frequency</td>
<td>Exploitation of large available bandwidth compared to sensor data rate</td>
<td>Random wake up during setup and turning radio off while idle</td>
</tr>
<tr>
<td>Hybrid TDMA/FDMA [8]</td>
<td>Centralized frequency and time division</td>
<td>Optimum number of channels calculated for minimum system energy</td>
<td>Hardware-based approach for system energy minimization</td>
</tr>
<tr>
<td>CSMA-based [9]</td>
<td>Contention-based random access</td>
<td>Application phase shift and pretransmit delay</td>
<td>Constant listening time for energy efficiency</td>
</tr>
</tbody>
</table>
MAC (Medium Access Control)

- Power Saving Modes of Operation
 - Regardless of medium access scheme
 - Example: Turn the transceiver off when it is not required
 - Dependent to its hardware
 - Characterized by Less power consumption ↔ latency overhead
Error Control

- **Automatic repeat request (ARQ)**
- **Forward Error Correction (FEC)**

Example of FEC

<table>
<thead>
<tr>
<th>Original Data</th>
<th>Checksum</th>
<th>Error Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 0 1</td>
<td>1 1 1 0</td>
<td>0 0 0 1</td>
</tr>
<tr>
<td>0 1 1 0</td>
<td>1 1 1 0</td>
<td>0 0 0 1</td>
</tr>
</tbody>
</table>

Correct the Error
Contents

- Introduction
- Sensor Networks Communication Architecture
- Protocol Stack
 - Physical Layer
 - Data Link Layer
 - Network Layer
 - Power efficiency routing (choose path)
 - Data centric routing (choose source/sink node)
 - Data aggregation
 - Sensor network schemes
 - Transport Layer
 - Application Layer
- Conclusion
Network Layer

- Power efficiency routing (choose path)
- Data centric routing (choose source/sink node)
- Data aggregation
- Sensor network schemes
Network Layer

- Power efficiency routing
- Routing paths (PA : Available power, α : required power)
 - Route 1 : T–B–A–Sink (PA : 4, α : 3)
 - Route 2 : T–C–B–A–Sink (PA : 6, α : 6)
 - Route 3 : T–D–Sink (PA : 3, α : 4)
 - Route 4 : T–F–E–Sink (PA : 5, α : 6)
Network Layer

- Power efficiency routing
- Routing paths (PA: Available power, α: required power)
 - Route 1: T–B–A–Sink (PA: 4, α: 3)
 - Route 2: T–C–B–A–Sink (PA: 6, α: 6)
 - Route 3: T–D–Sink (PA: 3, α: 4)
 - Route 4: T–F–E–Sink (PA: 5, α: 6)

- Maximum PA route
Power efficiency routing

Routing paths (PA : Available power, α : required power)

- Route 1 : T–B–A–Sink (PA : 4, α : 3)
- Route 2 : T–C–B–A–Sink (PA : 6, α : 6)
- Route 3 : T–D–Sink (PA : 3, α : 4)
- Route 4 : T–F–E–Sink (PA : 5, α : 6)

Minimum energy (α) route
Network Layer

- Power efficiency routing
- Routing paths (PA: Available power, \(\alpha \): required power)
 - Route 1: T–B–A–Sink (PA: 4, \(\alpha \): 3)
 - Route 2: T–C–B–A–Sink (PA: 6, \(\alpha \): 6)
 - Route 3: T–D–Sink (PA: 3, \(\alpha \): 4)
 - Route 4: T–F–E–Sink (PA: 5, \(\alpha \): 6)

- Minimum hop(node) route
Network Layer

- Power efficiency routing
- Routing paths (PA : Available power, α : required power)
 - Route 1 : T–B–A–Sink (PA : 4, α : 3)
 - Route 2 : T–C–B–A–Sink (PA : 6, α : 6)
 - Route 3 : T–D–Sink (PA : 3, α : 4)
 - Route 4 : T–F–E–Sink (PA : 5, α : 6)
- Maximum ‘minimum PA’ route
Network Layer

- Data Centric Routing
 - Interest dissemination from sink nodes
 - Advertise available data from sensor nodes
Network Layer

- Data aggregation
 - To avoid implosion and overlap
Network Layer

- Sensor network schemes
 - SMECN
 - FLOODING
 - GOSSIPING
 - SPIN
 - SAR
 - LEACH
 - Directed Diffusion
Network Layer

- SMECN (Small Minimum Energy Communication Network)
 - Creates a subgraph of the sensor network that contains the minimum energy path
Network Layer

- **FLOODING**
 - Old technique, broadcast data to all neighbor nodes regardless if they receive before or not
 - Implosion, Overlap, Resource blindness problem

- **GOSSIPING**
 - Sends data to one random neighbor node
 - Avoid implosion problem, low performance
SPIN (Sensor Protocols for Information via Negotiation)

- Sends data to sensor nodes only if they are interested
- 3 types of message; ADV, REQ, DATA
Network Layer

- **SAR** (Sequential Assignment Routing)
 - Creates multiple trees where the root of each tree is a one hop neighbor from the sink
 - Trees grow outward from the sink
 - Choose path based on energy resources, additive QoS metric, packet’s priority level.
LEACH (Low-Energy Adaptive Clustering Hierarchy)
- Forms clusters to minimize energy dissipation
- Randomly select sensor nodes as cluster heads
- High energy dissipation in communicating with the base station is spread to all sensor nodes
- Two phases
Network Layer

- **LEACH** (Low-Energy Adaptive Clustering Hierarchy)
 - **Setup Phase**
 - Cluster heads are selected randomly
 - Each sensor node is associated with its cluster head
 - **Steady Phase**
 - Sensor nodes begin sensing and sending data to head
 - Cluster heads aggregate data and send it to the base station
Network Layer

- Directed Diffusion
 1. Sink sends interest
 2. Gradients are set up
 3. Source sends the data
 4. Sinkrefreshes and reinforces the interest

- Based on data centric routing
Contents

- Introduction
- Sensor Networks Communication Architecture
- Protocol Stack
 - Physical Layer
 - Data Link Layer
 - Network Layer
 - Transport Layer
 - Application Layer
- Conclusion
Transport Layer

- Access to Internet or other external network
- Hybrid approach
 - TCP(sink – internet) + UDP(sink – sensor nodes)
Contents

- Introduction
- Sensor Networks Communication Architecture
- Protocol Stack
 - Physical Layer
 - Data Link Layer
 - Network Layer
 - Transport Layer
 - Application Layer
 - Largely unexplored region
 - Application layer protocols
- Conclusion
Application Layer

- Largely unexplored region
- Application layer protocols
 - SMP
 - TADAP
 - SQDDP
Application Layer

- **SMP** (Sensor Management Protocol)
 - System admin interacts with sensor networks
 - Administrative tasks
 - Introducing rules about data aggregation, attribute based naming and clustering to sensor nodes
 - Exchanging data related to the location finding algorithms
 - Time synchronization
 - Moving sensor nodes
 - Turning sensor nodes on/off
 - Querying network configuration, nodes’ status
 - Reconfiguring sensor networks
 - Authentication, security
Application Layer

- **TADAP** (Task Assignment and Data Advertisement Protocol)
 - Efficient interest dissemination interface
 - Interest dissemination by users
 - Data advertisement by sensor nodes
 - Helps data-centric routings in lower layers
Application Layer

- **SQDDP (Sensor Query and Data Dissemination Protocol)**
 - Provides user applications with interfaces to issue query, respond to queries and collecting incoming replies
 - Attribute, location based querying
Contents

- Introduction
- Sensor Networks Communication Architecture
- Protocol Stack
 - Physical Layer
 - Data Link Layer
 - Network Layer
 - Transport Layer
 - Application Layer
- Conclusion
Conclusion

- Realization of sensor networks needs to satisfy constraints.

- Since the constraints are specific for sensor networks, new wireless ad hoc networking techniques are required.