
Performance Debugging
for Distributed Systems of Black Boxes

Distributed Information Processing, Fall 2015

Summarized by Kyung-Min Kim and Kyoung-Woon On

Contents

2

n Introduction & Related work

n Problem Settings

n Approach

n Algorithms

n Experiments & Results

n Conclusions

Introduction & Related work

Performance Debugging for Distributed Systems of Black Boxes

3

Introduction
n Complex distributed systems are built from black

box components

n These systems may have performance problems

n Distributed systems with black box component are
hard to debug

n We need to design tools that isolate performance
bottlenecks in black-box distributed systems

4

Related work
n Systems that trace end-to-end causality via

modified middleware
n Magpie (Microsoft Research)
n Pinpoint (Stanford/Berkeley)
n Products such as AppAssure, PerformaSure,

OptiBench

n Systems that make inferences from traces
n Intrusion detection (Zhang & Paxson, LBL)
n They uses traces + statistics to find compromised

systems

Problem Settings

Performance Debugging for Distributed Systems of Black Boxes

6

Problem Settings

n Situation : an external request to the system
causes activities in the graph along a causal path

n Assumption : all latencies can be ascribed to the
node traversals

7

Goals
n Isolating performance bottlenecks

n Find high-impact causal path patterns
n Causal path
n High-impact

n Identify high-latency nodes on high-impact patterns
n Add significant latency to these patterns

n Without modifications or semantic knowledge

8

Approach

Performance Debugging for Distributed Systems of Black Boxes

9

Approach

n Obtain traces of messages between components

n Analyze traces using algorithms
n Nesting: faster, more accurate, limited to RPC-style

systems
n Convolution: works for all message-based systems

n Visualize results and highlight high-impact paths

10

Algorithms

Performance Debugging for Distributed Systems of Black Boxes

11

The nesting algorithm

n RPC-style communication

n Infers causality from “nesting” relationships
n Suppose A calls B and B calls C before returning to A
n Then the B«C call is “nested” in the A«B call

n Uses statistical correlation
tim

e

node A node B node C

call

call

return

return

Nesting: an example causal path in detail

A B

C

D

Steps of the nesting algorithm

1. Find call pairs in the trace
n (AÞB, BÞA), (BÞD, DÞB), (BÞC, CÞB)

2. Find and score all nesting relationships
n B®C nested in A®B
n B®D also nested in A®B

3. Pick best parents
4. Derive call paths

n A®B®[C ; D] tim
e

node A node B node C
call

return

call

call
return

node D

return

Pseudo-code for the nesting algorithm (1/3)

n Detects calls pairs and find all possible nestings of
one call pair in another

procedure FindCallPairs
for each trace entry (t1, CALL/RET, sender A, receiver B, callid id)

case CALL:
store (t1,CALL,A,B,id) in Topencalls

case RETURN:
find matching entry (t2, CALL, B, A, id) in Topencalls
if match is found then

remove entry from Topencalls
update entry with return message timestamp t2
add entry to Tcallpairs
entry.parents := {all callpairs (t3, CALL, X, A, id2) in Topencalls with t3 < t2}

FindCallPairs (1/2)

n Trace entry
n {(A, B, id1), (B, C, id2), (C, B, id2…}

n Topencalls
n A set of not yet paired traces
n Hash table structure

n For each trace in trace entry, find matching
entry in Topencalls using sender, receiver, callid
information and save pair into Tcallpairs

n All possible parents information is obtained by
finding precedent call pairs in Topencalls

tim
e

node A node B node C
call

return

call

call
return

node D

return

t1

t2

t3

t4

FindCallPairs (2/2)

n Topencalls

n When we process (C, B, ID2)..
n (B, C, ID2) in Topencalls is matched
n Find call pairs (-, B) in Topencalls with an earlier call

timestamp
n There is (A, B, ID1) with earlier timestamp
n So (A, B, ID1) becomes the parents of the call pair

(B, C, ID2)

tim
e

node A node B node C
call

return

call

call
return

node D

return

t1

t2

t3

t4

Time CALL/RET Sender Receiver ID

t1 CALL A B ID1

t2 CALL B C ID2

Pseudo-code for the nesting algorithm (2/3)

n Pick the most likely candidate for the causing call
for each call pair

procedure ScoreNestings
for each child (B, C, t2, t3) in Tcallpairs
for each parent (A, B, t1, t4) in child.parents

scoreboard[A, B, C, t2-t1] += (1/|child.parents|)

procedure FindNestedPairs
for each child (B; C; t2; t3) in call pairs

maxscore := 0
for each p (A, B, t1, t4) in child.parents

score[p] := scoreboard[A, B, C, t2-t1]*penalty
if (score[p] > maxscore) then

maxscore := score[p]
parent := p

parent.children := parent.children U {child}

ScoreNestings (1/2)
n Tcallpairs

n For each child pair in Tcallpairs,
find parent and store score into
scoreboard

n (A, B, ID1) is a parent of (B, C, ID2)
n Scoreboard

n If there are many parents for the child, score will be
(1/|parents|) and definitely most probable causal parent
pair will get highest score

tim
e

node A node B node C
call

return

call

call
return

node D

return

t1

t2

t3

t4

Sender Receiver Time1 Time2

A B t1 t4

B C t2 t3

…

Node1 Node2 Node3 Delta
A B C t2-t1

ScoreNestings (2/2)

n Ambiguous case

n Each B to C call pair can have
two different parent (A to B)

n In Scoreboard, there are 4 possible entries
n Long-length delay : (A, B, C, t4-t1)
n Short-length delay : (A, B, C, t3-t2)
n Medium-length delay : (A, B, C, t3-1) & (A, B, C, t4-t2)
n Score of Medium-length delay > score of long&short-

length delay

tim
e

node A node B node C
call

return

call
call

return

node D

return

t1

t2
t3

t4 call

return

Pseudo-code for the nesting algorithm (3/3)

n Derive call paths from the causal relationships

procedure FindCallPaths
initialize hash table Tpaths
for each callpair (A, B, t1, t2)

if callpair.parents = null then
root := { CreatePathNode(callpair, t1) }
if root is in Tpaths then update its latencies
else add root to Tpaths

function CreatePathNode(callpair (A, B, t1, t4), tp)
node := new node with name B
node.latency := t4 - t1
node.call_delay := t1 - tp
for each child in callpair.children
node.edges := node.edges U { CreatePathNode(child, t1)}

return node

FindCallPaths

n Find the most parent node
n for each callpair (A, B, t1, t2)

if callpair.parents = null then

n Node A becomes root node

n Make a path by adding child nodes to the edges
of root node
n A->B->C;D

tim
e

node A node B node C
call

return

call

call
return

node D

return

t1

t2

t3

t4

The “convolution algorithm”
n Finds causal relationships

n Considering the aggregation of multiple messages.
n Separates a whole system trace into a set of per-edge

traces.

n Convert traces into time signals (per-edge traces)
n Use signal processing techniques to find the cross

correlations between signals
n Can be used on traces of free-form message-based

communications

© 2011, SNU CSE Biointelligence Lab., http://bi.snu.ac.kr 23

The “convolution algorithm”
n Look for time-shifted similarities

n Compute cross correlation by convolution
n = ⊗ = 	∫ −

n Find peaks in C(t)
n Time shift of peak indicate delay
n Considering the aggregation of multiple messages.
n Separates a whole system trace into a set of per-edge traces.

© 2011, SNU CSE Biointelligence Lab., http://bi.snu.ac.kr 24

The “convolution algorithm”

© 2011, SNU CSE Biointelligence Lab., http://bi.snu.ac.kr 25

The “convolution algorithm”
n Detect the spikes (peaks)

n Compute mean and standard deviations of C
n Spike if in is a local maximum N (e.g., 4) standard deviations above the mean
n Require at least one point that is less than S (e.g., 3) standard deviations above

the mean between spikes, where S < N
n Chose largest to represent the spike

© 2011, SNU CSE Biointelligence Lab., http://bi.snu.ac.kr 26

The “convolution algorithm”
n Time complexity: O(em+eSlogS)

n m = # message
n e = # edge in output graph
n s = # time steps in trace

n Need to choose time step size
n Must be shorter than delays of interest
n Too coarse: poor accuracy
n Too fine: long running time

n Robust to noise in trace

n Run-time is dependent on the trace duration and time
quantum, not the trace length

© 2011, SNU CSE Biointelligence Lab., http://bi.snu.ac.kr 27

Comparison of the two algorithms

Nesting Algorithm Convolution Algorithm

Communication
style RPC only RPC or free-form messages

Rare events Yes, but hard No

Level of Trace detail <timestamp, sender,
receiver> + call/return tag

<timestamp, sender,
receiver>

Time and space
complexity

Linear space
Linear time

Linear space
Polynomial time

Visualization RPC call and return combine Less compact

© 2011, SNU CSE Biointelligence Lab., http://bi.snu.ac.kr 28

Experiments and Results

Performance Debugging for Distributed Systems of Black Boxes

© 2011, SNU CSE Biointelligence Lab., http://bi.snu.ac.kr 29

Maketrace
n Synthetic trace generator
n Needed for testing

n Validate output for known input
n Check corner cases

n Uses set of causal path templates (tracelet)
n All call and return messages, with latencies
n Gaussian delay between messages

n Recipe to combine paths
n Parallelism, start/stop times for each path
n Duration of trace

© 2011, SNU CSE Biointelligence Lab., http://bi.snu.ac.kr 30

Desired results for one trace
n Causal paths

n How often
n How much time spent

n Nodes
n Host/component name
n Time spent in node and all of the nodes it calls

n Edges
n Time parent waits before calling child

© 2011, SNU CSE Biointelligence Lab., http://bi.snu.ac.kr 31

Measuring Added Delay
n Added 200msec delay in WS2

n The nesting alg. detects the added
delay, and so does the convolution
algorithm

© 2011, SNU CSE Biointelligence Lab., http://bi.snu.ac.kr 32

Total latency
Total count

Mean latency in ws2

Mean latency
between

ws2&auth

Ws2->auth count
Delay between ws2&auth

Results: Petstore
n Sample EJB application
n J2EE middleware for Java

n Instrumentation from Stanford’s PinPoint project

n 50msec delay added in mylist.jsp

© 2011, SNU CSE Biointelligence Lab., http://bi.snu.ac.kr 33

Validation of accuracy
n False negative rate for top N pattern

n Is bounded in most cases my 1/N

© 2011, SNU CSE Biointelligence Lab., http://bi.snu.ac.kr 34

accuracy
n Trace parallelism

n Delay variation

n Message drop rate

© 2011, SNU CSE Biointelligence Lab., http://bi.snu.ac.kr 35

Conclusions

Performance Debugging for Distributed Systems of Black Boxes

© 2011, SNU CSE Biointelligence Lab., http://bi.snu.ac.kr 36

Conclusions
n Looking for bottlenecks in black box systems

n Finding causal paths is enough to find bottlenecks

n Algorithms to find paths in traces really work
n We find correct latency distribution
n Two very different algorithms get similar results
n Passively collected traces have sufficient information

© 2011, SNU CSE Biointelligence Lab., http://bi.snu.ac.kr 37

Thank you

© 2011, SNU CSE Biointelligence Lab., http://bi.snu.ac.kr 38

