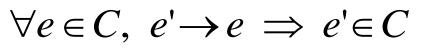
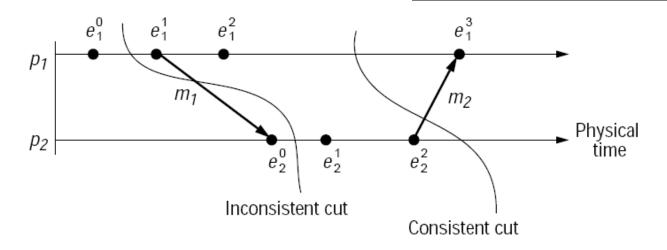
Distributed Information Processing

3rd Lecture

Eom, Hyeonsang (엄현상) Department of Computer Science & Engineering Seoul National University

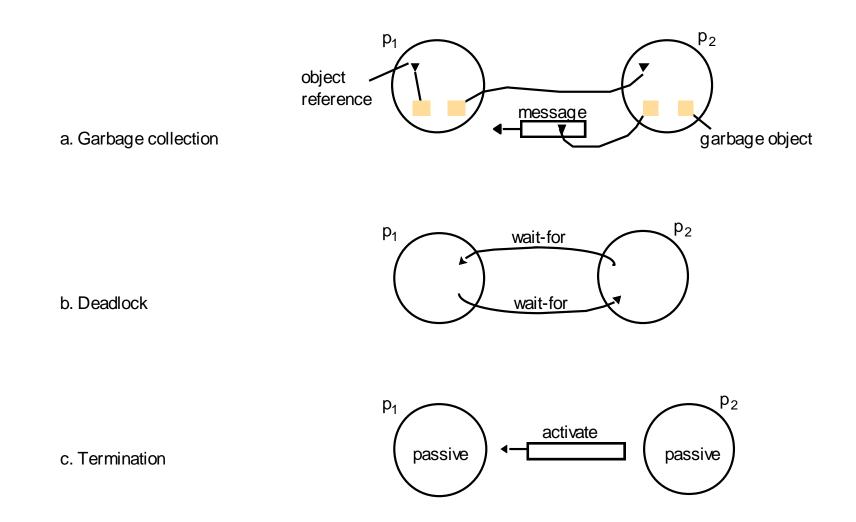

©Copyrights 2016 Eom, Hyeonsang All Rights Reserved

Outline


Clock and Global States Global States Determining Consistent Global States Q&A

Global States Prefix of Pi's History & Global History $h_i^k = \langle e_i^j | j = 1, ..., k \rangle, \quad H = \bigcup_{i=1}^{k} h_i$ Cut & Frontier $C = \bigcup_{i=1}^{N} h_i^{C_i}, \quad F = \{e_i^{C_i} \mid i = 1, ..., N\}$ Set of All **Affected Values** Global State (Corresponding to C) $S = \{s_i^{C_i} \mid i = 1, ..., N, s_i^{C_i} \text{ is } P_i \text{ 's state immediately after } e_i^{C_i}\}$ Run: a Total Ordering in a Global History Consistent with Each Local History

H Is Consistent If the Corresponding C Is Consistent


Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4 © Pearson Education 2005

Consistent Run: a Total Ordering in a Consistent Global History, Consistent with the Happened-Before Relation Lattice of Global States
 Observing Consistent Global States

 $S = \{s_i | i = 1, ..., N\}$ Is Consistent iff $VC_i(s_i)[i] \ge VC(s_j)[i]$ for i, j = 1, ..., N

Detecting Global Properties

Distributed 'Snapshot' Algorithm [Chandy85] Assumptions -Reliable,

Consistent Global-State Detection

Marker sending rule for process pi Marker to Record the State

After *pi* has recorded its state, for each outgoing channel *c*:

pi sends one marker message over *c*

(before it sends any other message over c).

Marker receiving rule for process p_i

On p_i 's receipt of a *marker* message over channel *c*:

if $(p_i \text{ has not yet recorded its state})$ it

records its process state now;

records the state of *c* as the empty set;

turns on recording of messages arriving over other incoming channels; *else*

 p_i records the state of c as the set of messages it has received over c since it saved its state.


end if

Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4 © Pearson Education 2005

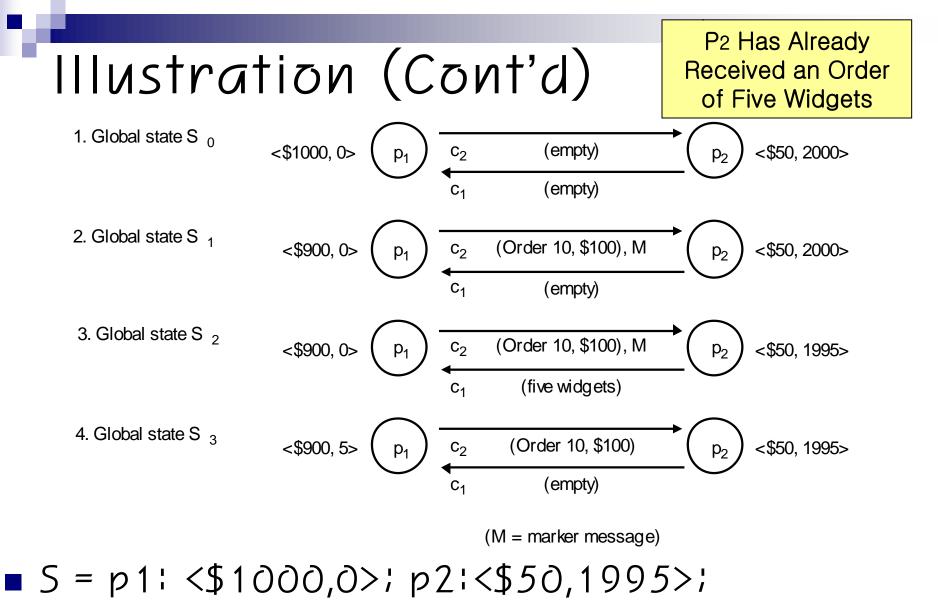
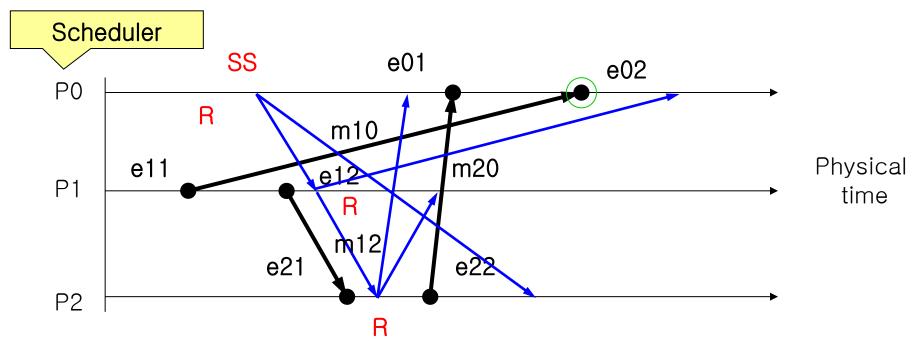

Assumptions -Reliable, Strongly-Connected Components -Unidirectional Channels & In-Order Message Delivery

Illustration: How the Alg. Works

Initial States of the Components



P2 Has Already Received an Order of Five Widgets

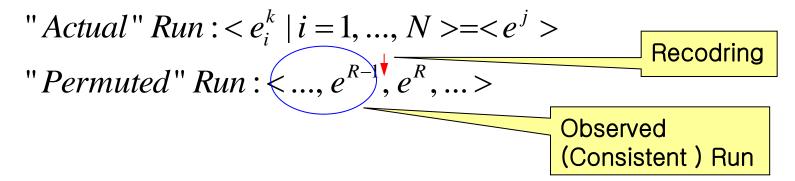
c1: <(five widgets)>; c2:<>

Illustration w/ a Diagram

SS: p0: <>; p1: <e11,e12>; p2:<e21> c01:<>; c02 <>; c10<m10>; c12 <> c20 <>; c21<>

Consistency Proof

States Recorded by the Alg. Are Consistent:


$$\begin{aligned} \forall e_{j} \in C, \ e_{i} \rightarrow e_{j} \implies e_{i} \in C \\ Show: \ e_{i} \notin C, \ e_{i} \rightarrow e_{j} \implies e_{j} \notin C \quad \underbrace{i \neq j} \end{aligned}$$

 Assume That Pi Recorded Its State before ei
 Marker Would Have Reached Pj before the Message for ej

Pj Would Have Recorded Its State before ej

Characteristics of Snapshots

 Derivation of "Observed" Run from "Actual" Run

- □A Non-Observed Event May Occur before an Observed Event in the "Actual" Run
- If a Non-Observed Event Precedes an Observed Event (Next to it) in the "Actual" Run, the Events Can Be Swapped Preserving Consistency

Global State Predicates

- Functions That Map Global States to True or False
 - □Stable: Once True, It Remains True
 - E.g., deadlock or termination
 - □Unstable: Not Stable
 - Possibly True: True At Some Point
 E.g., snapshot by the 'Snapshot' Algorithm
 - Definitely True: True in All Cases