
©Copyrights 2016 Eom, Hyeonsang All Rights Reserved

Distributed Information
Processing

14th Lecture

Eom, Hyeonsang (엄현상)
Department of Computer Science

& Engineering
Seoul National University

Outline

 Architectures

 Peer-to-Peer Computing

Introduction

Chord

 Q&A

Architectures
 Software Architecture

How Software Components Are Organized
How Software Components Should

Interact

 System Architecture
Final Instantiation of a Software

Architecture

 Important Styles of Architecture for
(Autonomic) Distributed Systems
Layered Architectures
Object-Based Architectures
Data-Centered Architectures
Event-Based Architectures

Architectural Styles

(a) layered architectural style

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved

(b) The object-based architectural style

Architectural Styles (Cont’d)

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved

(a) The event-based architectural style

Architectural Styles (Cont’d)

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved

(b) The shared data-space architectural style

Architectural Styles (Cont’d)

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved

System Architectures
 Centralized Architecture

Clients That Request Services from
Servers

Support for Vertical Distribution
 Placing different components on different

machines

 Decentralized Architecture
Process Being a Client and a Server

Support for Horizontal Distribution
 Spitting up a client or server physically into

logically equivalent parts with each part
operating on its own share of data set

Peer-to-Peer Architectures

 Overlay Network
Network in which the nodes are formed

by the processes and the links represent
the possible communication channels

 Structured P2P Architecture
Overlay network is Constructed using a

deterministic procedure
 Distributed Hash Table (DHT)

 Unstructured P2P Architecture
Overlay network is Constructed using a

random algorithm

Centralized Architectures

General interaction between a client and a server

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved

Application Layering

 Following Layered Architectural
Style
User-Interface Level

Processing Level

Data level

Application Layering (Cont’d)

The simplified organization of an Internet search
engine into three different layers

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved

Multitiered Architectures

 The simplest organization is to
have only two types of machines:

 A client machine containing only
the programs implementing (part
of) the user-interface level

 A server machine containing the
rest,
 the programs implementing the processing

and data level

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved

Multitiered Architectures
(Cont’d)

Alternative client-server organizations (a)–(e)

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved

Multitiered Architectures
(Cont’d)

An example of a server acting as client

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved

Structured Peer-to-Peer
Architectures

The mapping of data items
onto nodes in Chord

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved

Structured Peer-to-Peer
Architectures (Cont’d)

The mapping of data items onto
nodes in CAN

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved

Peer-to-Peer (P2P) Computing
 Definition

Computing by Sharing Data & Resources on a
Very Large Scale w/o Server Requirements

 Important Characteristics
Each Node’s Resource Contribution

Same Functional Capabilities &
Responsibilities of Nodes

No Central Administration

Limited Degree of Anonymity

Unpredictable Availability

Fault Tolerance
Key Issue: Efficient Data Placement & Access

1st-Generation P2P Systems

 File Sharing and Storage Applications
Napster Music Exchange Service

 Use of central servers to locate files

Gnutella
 Distributed service using scoped broadcast

queries

Main Problem: Limited Scalability or No Guarantee
That Files Can Be Located

2nd-Generation P2P Systems

 Middleware
Application-Independent Management of

Distributed Resources on a Global Scale
 Routing Overlay for locating nodes and objects

 Scalable

 Load balanced

 Adaptive to network dynamics

 Fault tolerant

 Efficiently discovering

 Secure Implementing Key-Based
Routing (KBR) Interface:
Routing of Messages to a
Live Node Responsible for
the Destination Key

Using Randomly Distributed
Keys to Determine the
Placement of Objects and to
Retrieve Them

IP vs Overlay Routing

Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4 © Pearson Education 2005

IP Application- level routing overlay

Scale IPv4 is limited to2 3̂2 addressable nodes. The

IPv6 name space is much more generous

(2 1̂28), but addresses in both versions are

hierarch ically structured and much of the space

is pre- allocated according to administrative

requirements.

Peer-to- peer systems can address more objects.

The GUID name space is very large and flat

(>2̂ 128), allowing it to be much more fully

occupied.

Load balancing Loads on routers are determined by network

topology and associated traffic patterns.

Object locations can be randomized and hence

traffic patterns are divorced from the network

topology.

Network dynamics

(addition/deletion of

objects/nodes)

IP routing tables are updated asynchronously on

a best- efforts basis with time constants on the

order of 1 hour.

Routing tables can be updated synchronously or

asynchronously with fractions of a second

delays.
Fault tolerance Redundancy is designed into the IP network by

its managers, ensuring tolerance of a single

router or network connectivity failure. n-fold

replication is costly.

Routes and object references can be replicated

n- fold, ensuring tolerance of n failures of nodes

or connections.

Target identification Each IP address maps to exactly one target

node.

Messages can be routed to the nearest replica of

a target object.

Security and anonymity Addressing is only secure when all nodes are

trusted. Anonymity for the owners of addresses

is not achievable.

Security can be achieved even in environments

with limited trust. A limited degree of

anonymity can be provided.

Structured P2P Overlay Networks
 Supporting Higher-Level Interfaces

Distributed Hash Table (DHT)
 Basic Interface: put(), get(), remove()

 E.g., Pastry

Distributed Object Location & Routing (DOLR)
 Basic Interface: publish(), unpublish(),

routeToObject()

 E.g., Tapestry

 Ignoring/Considering Network Distances
Shortest Overlay-Hop Routing

 E.g., Chord

Locally Optimal Routing
 E.g., Tapestry

Chord Protocol [Keifer03]

 Simple Key Location

Cord Protocol (Cont’d)

 Scalable Key Location

Cord Protocol (Cont’d)

 Scalable Key Location

Is This Necessary?

Cord Protocol (Cont’d)

 Node Joining/Leaving

Cord Protocol (Cont’d)

 Properties of Chord
Load Balance

 Acting as a Distributed Hash Function

Decentralization
 Fully distributed

Scalability
 Lookup cost growing as the log of # of nodes

Availability
 Enabling the node responsible for a key to be

found via automatic internal-table adjustment

Flexible naming
 Using flat key-space

Reference

 [Keifer03] C. Keifer, “Cord: A Scalable
Peer-to-Peer Look-Up Protocol for
Internet Applications (by R. Morris, et
al),” Writeup, Department of Computer
Science, Saarland University, November
2002

