Distributed Information Processing
5th Lecture

Eom, Hyeonsang (엄현상)
Department of Computer Science & Engineering
Seoul National University
Outline

- Communication
 - Layered Protocols
 - Middleware Protocols
 - Types of Communication

- Communication Methods

- Q&A
Message Passing Requirements

Agreements Needed at a Variety of Levels

- Meaning of the Bits Being Sent
 - Character coding: e.g., EBCDIC and ASCII
- Number of Volts for a 1-bit
- Indication of the Last Bit of the Message
- Detection of Damaged or Lost Messages
- Lengths of Numbers, Strings, and Others
- Representations

Agreements from the low-level details of bit transmission to the high-level details of how information is to be expressed
Layered Protocols

- ISO OSI (Open Systems Interconnection) Reference Model
 - Designed to Allow Open Systems to Communicate
 - Open system is prepared to communicate with any other by using standard rules that govern the format, contents, and meaning of messages
 - Protocols: such rules formalized
 - Connection oriented
 - Connectionless
 - Useful for Understanding Computer Networks

- Protocol Suite (or Stack)
 - Collection of Protocols Used in a System
Layers, interfaces, and protocols in the OSI model

Illustration: Layered Protocols (1)
Illustration: Layered Protocols (2)

A typical message as it appears on the network
Middleware Protocols

An adapted reference model for networked communication

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved
Types of Communication

- Synchronize at request submission
- Synchronize at request delivery
- Synchronize after processing by server

Viewing middleware as an intermediate (distributed) service in application-level communication

Persistent vs. Transient Communication
Asynchronous vs. Synchronous Communication

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved
Communication Methods

- **RPC (Remote Procedure Call)**
 - Communication by Calling Remote Procedures
 - Definition of service interface
 - Lack of ability to create new object instances
 - Lack of support for remote object references

- **RMI (Remote Method Invocation)**
 - Communication by Calling Methods of a Remote Object
 - Implementation of a remote interface
 - Creation of new object instances
 - Support for remote object references
Communication Methods (Cont’d)

- **Socket**
 - Communication of Messages and Data between Processes
 - Use of a raw communication channel
 - Definition of a low-level message protocol
 - Definition of data transmission format

- **Distributed Event-Based Systems**
 - Communication via Event Subscription and Notification
 - Support for heterogeneity
 - Support for asynchronous communication
Middleware Approaches

Location Transparency

- Applications
- RMI, RPC and events
- Request reply protocol
- External data representation
- Operating System

Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4 © Pearson Education 2005
Method Invocation

- Local vs Remote Invocation
Distributed Object Model

A Remote Object and Its Remote Interface
Distributed Object Model (Cont’d)

Instantiation of Remote Objects

![Diagram of distributed object model](image)

Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4 © Pearson Education 2005
RMI Components

■ **Proxy**
 - Forwarding Messages to a Remote Object and Receiving the Reply
 - Making RMI transparent to clients

■ **Dispatcher**
 - Receiving the Request and Selecting the Appropriate Skeleton Method

■ **Skeleton**
 - Implementing Methods in the Remote Interface
 - Unmarshalling arguments and invoking the method
RMI Components (Cont’d)

Illustration

Translating between Local and Remote Object References and Creating Remote Object References
RPC Components

Illustration