Outline

- Clock
 - Logical Clocks & Ordering of Events
 - Vector Clocks
- Q&A
Partial Ordering of Events

Assumptions

- System Consists of N Processes:
 \[p_i \quad (i = 1, \ldots, N) \]
- System Is Composed of a Collection of Events
 - Examples of events
 - Execution of a subprogram
 - Execution of a single machine instruction
 - Sending or receiving a message

\[\text{history}(p_i) = h_i = \left\langle e^k_i \mid k = 1, \ldots \right\rangle \quad (i = 1, \ldots, N) \]
Partial Ordering of Events
[Lamport78]

“Happened Before” Relation (→)

(1) \(k < l \implies (if) \quad e_i^k \rightarrow e_i^l \quad (i = 1, \ldots, N) \)

(2) \(e_i = \text{send}(m), e_j = \text{receive}(m) \quad \text{for Message } m \)

\[\implies e_i \rightarrow e_j \]

(3) \(e \rightarrow e' \land e' \rightarrow e'' \implies e' \rightarrow e'' \)

* \(e \rightarrow e \)

Transitive
Irreflexive

Concurrent Relation (Ⅱ)

\[e \rightarrow e^* \land e^* \rightarrow e \implies e \parallel e^* \]
Logical Clocks [Lamport78]

- Ways of Assigning Numbers to Events
 \[LC_i(e), \text{where } e \text{ is an event in process } p_i \]

- Clock (Correctness) Condition
 \[e \rightarrow e^* \Rightarrow LC(e) < LC(e^*) \]
 - Satisfied if the following two conditions hold:
 1. \(k < l \Rightarrow LC(e_i^k) < LC(e_i^l) \) \((i = 1, \ldots, N) \)
 2. \(e_i = \text{send}(m), \ e_j = \text{receive}(m) \text{ for Message } m \)
 \(\Rightarrow \ LC(e_i) < LC(e_j) \)
Logical Clocks (Cont’d) [Lamport 78]

Implementation Rules

1. \(LC(e_i^{k+1}) = LC(e_i^k) + 1 \) for Successive Events \(e_i^k, e_i^{k+1} \)
 \((i = 1, ..., N)\)

2. \(e_i = \text{send}(m), e_j^l = \text{receive}(m) \) for Message \(m \)

\[\Rightarrow \quad t = LC(e_i) \in m, \quad LC(e_j^l) = \max\{ LC(e_j^{l-1}), t \} + 1 \]
Ordering the Events Totally

[{

Total Ordering \(\Rightarrow_{t.o.} \)

\(e \Rightarrow_{t.o.} e^* \) iff \(LC_i(e) < LC_j(e^*) \lor \{LC_i(e) = LC_j(e^*) \land i < j\} \)

\(e \rightarrow e^* \Rightarrow e \Rightarrow_{t.o.} e^* \)

- Use Case: Mutual Exclusion Problem
 - Processes sharing a single resource
 - A process using it must release it before the following use
 - The processes must use it in their request order
 - If it is eventually released, every request is eventually granted

}]
Ordering the Events Totally (Cont’d) [Lamport78]

- Nontrivial Scheduling Problem
 - The Requests Cannot Be Granted in the Order They Are Received

Scheduler

This Earlier Request Is Received Later
Ordering the Events Totally (Cont’d)

- Nontrivial Scheduling Problem

- Assumptions for an Algorithm
 - In-order message delivery
 - Each process’ request queue
 - Initially containing a request with T0:P0

- Algorithm
 - Pi sends a Tm:Pi Req to all others and puts it in the queue
 - Each receiver puts it in the queue and sends a timestamped Ack to the requestor
 - When releasing the resource, Pi removes the Req and sends a timestamped Rel to all others
 - Each receiver removes Pi’s Req from its queue
 - The Tm:Pi Req is granted if it is the first in ⇒, and Pi has received a message from all others timestamped later than Tm

Smallest Time Value:
- Scheduler ID
- Send Time

(1) A process using it must release it before the following use
(2) The processes must use it in their request order
(3) If it is eventually released, every request is eventually granted
Vector Clocks

Shortcomings of Lamport’s Logical Clock

\[LC_i(e) < LC_j(e^*) \implies e \rightarrow e^* \]
Vector Clocks (Cont’d)

- Implementation Rules

1. \(VC_i[j] = 0 \) \((i, j = 1, \ldots, N)\)

2. \(VC_i(e_i^{k+1})[i] = VC_i(e_i^k)[i] + 1 \) for Successive Events \(e_i^k, e_i^{k+1} \) \((i = 1, \ldots, N)\)

3. \(e_i = send(m), e_j^l = receive(m) \) for Message \(m \)

\[t = VC_i(e_i) \in m, VC_j(e_j^l) = \max\{VC_j(e_j^{l-1}), t\} + j \]
Vector Clocks (Cont’d)

Vector-Timestamp Comparisons

$$VC = VC * \text{ iff } VC[j] = VC^*[j] \quad (j = 1, ..., N)$$
$$VC \leq VC * \text{ iff } VC[j] \leq VC^*[j] \quad (j = 1, ..., N)$$
$$VC < VC * \text{ iff } VC \leq VC^* \land VC \neq VC *$$

Properties

$$e \rightarrow e^* \text{ iff } VC(e) < VC(e^*)$$

Hints for the Proof

$$e \parallel e^* \Rightarrow \neg \{ VC(e) \leq VC(e^*) \lor VC(e) \geq VC(e^*) \}$$

(Note That $VC_i[j] \leq VC_j[j]$)

Strong Clock Condition
Vector Clocks

Properties

\[e_i \rightarrow e_j \text{ iff } VC_i[j] \leq VC_j[j], \text{ where } i \neq j \]

Hint for the Proof

(Note That \(VC_i[j] \leq VC_j[j] \))

\[\exists k(\neq j) \text{ s.t. } VC_i[k] < VC_j[k] \]

\[\Rightarrow \exists e_k \text{ s.t. } (e_k \leftrightarrow e_i) \land (e_k \rightarrow e_j) \]

Simple Clock Condition

Weak Gap Detection
Vector Clocks (Cont’d)

Properties

\[\exists k (\neq j) \text{ s.t. } VC_i(e_i)[k] < VC_j(e_j)[k] \]
\[\Rightarrow \exists e_k (\neq e_i) \text{ s.t. } (e_k \rightarrow e_i) \land (e_k \rightarrow e_j) \]

Suppose That \(i = k \),

\[\exists k (\neq j) \text{ s.t. } VC_k(e_k^*)[k] < VC_j(e_j)[k] \]
\[\Rightarrow \exists e_k (\neq e_k^*) \text{ s.t. } (e_k \rightarrow e_k^*) \land (e_k \rightarrow e_j) \]

iff \(\exists e_k (\neq e_k^*) \text{ s.t. } e_k^* \rightarrow e_k \rightarrow e_j \)

\[\exists e_k (\neq e_k^* \land k \neq j) \text{ s.t. } e_k^* \rightarrow e_k \rightarrow e_j \]
\[\Rightarrow VC_k(e_k^*)[k] < VC_j(e_j)[k] \]
Vector Clocks (Cont’d)

Properties

\[\forall (k \neq j), \ VC_k(e_k^*)[k] \geq VC_j(e_j)[k] \]

\[\Rightarrow \neg \{ \exists e_k (\neq e_k^*) \} \ s.t. \ e_k^* \rightarrow e_k \rightarrow e_j \]

If the Monitoring Process Keeps the Value of the \(k \)-th Elt of VC from \(P_k \), It Can Decide Whether There Is No Event That Happened before a Given Event