
© C O P Y R I G H T S 2 0 2 3 E O M , H Y E O N S A N G A L L R I G H T S

R E S E R V E D

엄현상(Eom, Hyeonsang)

School of Computer Science and Engineering

Seoul National University

- C++ Classes and Objects
- Classes

- Objects

- Member Functions

- Data Members

- Initializing Objects with Constructors

- Separating Interface from Implementation

- Validating Data

- Q&A

© C O P Y R I G H T S 2 0 2 3 E O M , H Y E O N S A N G A L L R I G H T S

R E S E R V E D

Outline

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

C++ Programs

• Function main and

• One or more classes

– Each containing data members and member

functions

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Classes, Objects, Member

Functions, & Data Members

• Classes: Car example

– Functions describe the mechanisms that perform

tasks, such as acceleration

• Hide complex tasks from the user, just as a driver can

use the pedal to accelerate without needing to know

how the acceleration is performed

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Classes, Objects, Member

Functions, & Data Members Cont’d

• Classes: Car example Cont’d

– Classes must be defined before they can be used;

a car must be built before it can be driven

– Many car objects can be created from the same

class, many cars can be built from same

engineering drawing

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Classes, Objects, Member

Functions, & Data Members Cont’d

• Classes: Car example Cont’d

– Member-function calls send messages to an object

to perform tasks, just like pressing the gas pedal

sends a message to the car to accelerate

– Objects and cars both have attributes, like color

and miles driven

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Class with a Member Function

• Class definition

– Tells compiler what member functions and data

members belong to the class

– Keyword class followed by the class’s name

– Class body is enclosed in braces ({})

• Specifies data members and member functions

• Access-specifier public:

– Indicates that a member function or data member is accessible

to other functions and member functions of other classes

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

 1 // Fig. 3.1: fig03_01.cpp

 2 // Define class GradeBook with a member function displayMessage;

 3 // Create a GradeBook object and call its displayMessage function.

 4 #include <iostream>

 5 using std::cout;

 6 using std::endl;

 7

 8 // GradeBook class definition

 9 class GradeBook

10 {

11 public:

12 // function that displays a welcome message to the GradeBook user

13 void displayMessage()

14 {

15 cout << "Welcome to the Grade Book!" << endl;

16 } // end function displayMessage

17 }; // end class GradeBook

18

19 // function main begins program execution

20 int main()

21 {

22 GradeBook myGradeBook; // create a GradeBook object named myGradeBook

23 myGradeBook.displayMessage(); // call object's displayMessage function

24 return 0; // indicate successful termination

25 } // end main

Welcome to the Grade Book!

Beginning of class definition
for class GradeBook

Beginning of class body

End of class body

Access pecifiers public; makes

members available to the public

Member function
displayMessage returns nothing

Use dot operator to call
GradeBook’s member function

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Common Programming Error 1

• Forgetting the semicolon at the end of a class

definition is a syntax error.

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Class w/ a Member Function Cont’d

• Member function definition

– Return type of a function

• Indicates the type of value returned by the function when it

completes its task

• void indicates that the function does not return any value

– Function name must be a valid identifier

– Parentheses after function name indicate that it is a

function

– Function body contains statements that perform the

function’s task

• Delimited by braces ({})

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Common Programming Error 2

• Returning a value from a function whose

return type has been declared void is a

compilation error.

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Common Programming Error 3

• Defining a function inside another function is

a syntax error.

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Class w/ a Member Function Cont’d

• Using a class

– A class is a user-defined type (or programmer-defined

type)

• Can be used to create objects

– Variables of the class type

• C++ is an extensible language

– Dot operator (.)

• Used to access an object’s data members and member functions

• Example

– myGradeBook.displayMessage()

» Call member function displayMessage of GradeBook object

myGradeBook

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Member Function w/ a Parameter

• Function parameter(s)

– Information needed by a function to perform its

task

• Function argument(s)

– Values supplied by a function call for each of the

function’s parameters

• Argument values are copied into function parameters at

execution time

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Member Function w/ a Parameter

• A string

– Represents a string of characters

– An object of C++ Standard Library class std::string

• Defined in header file <string>

• Library function getline

– Used to retrieve input until newline is encountered

– Example

• getline(cin, nameOfCourse);

– Inputs a line from standard input into string object nameOfCourse

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

 1 // Fig. 3.3: fig03_03.cpp

 2 // Define class GradeBook with a member function that takes a parameter;

 3 // Create a GradeBook object and call its displayMessage function.

 4 #include <iostream>

 5 using std::cout;

 6 using std::cin;

 7 using std::endl;

 8

 9 #include <string> // program uses C++ standard string class

10 using std::string;

11 using std::getline;

12

13 // GradeBook class definition

14 class GradeBook

15 {

16 public:

17 // function that displays a welcome message to the GradeBook user

18 void displayMessage(string courseName)

19 {

20 cout << "Welcome to the grade book for\n" << courseName << "!"

21 << endl;

22 } // end function displayMessage

23 }; // end class GradeBook

24

25 // function main begins program execution

26 int main()

27 {

28 string nameOfCourse; // string of characters to store the course name

29 GradeBook myGradeBook; // create a GradeBook object named myGradeBook

30

Include string class definition

Member function parameter

Use the function

parameter as a variable

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

31 // prompt for and input course name

32 cout << "Please enter the course name:" << endl;

33 getline(cin, nameOfCourse); // read a course name with blanks

34 cout << endl; // output a blank line

35

36 // call myGradeBook's displayMessage function

37 // and pass nameOfCourse as an argument

38 myGradeBook.displayMessage(nameOfCourse);

39 return 0; // indicate successful termination

40 } // end main

Please enter the course name:
CS101 Introduction to C++ Programming

Welcome to the grade book for
CS101 Introduction to C++ Programming!

Passing an argument to

the member function

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Member Function w/ a Parameter

• Parameter Lists

– Additional information needed by a function

– Located in parentheses following the function name

– A function may have any number of parameters

• Parameters are separated by commas

– The number, order and types of arguments in a function

call must match the number, order and types of parameters

in the called function’s parameter list

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Common Programming Error 4

• Placing a semicolon after the right parenthesis

enclosing the parameter list of a function

definition is a syntax error.

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Common Programming Error 5

• Defining a function parameter again as a local

variable in the function is a compilation error.

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Good Programming Practice 1

• To avoid ambiguity, do not use the same

names for the arguments passed to a function

and the corresponding parameters in the

function definition.

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Good Programming Practice 2

• Choosing meaningful function names and

meaningful parameter names makes programs

more readable and helps avoid excessive use

of comments.

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Data Members, set Functions and

get Functions

• Local variables

– Variables declared in a function definition’s body

• Cannot be used outside of that function body

– When a function terminates

• The values of its local variables are lost

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Data Members, set Functions and

get Functions Cont’d

• Attributes

– Exist throughout the life of the object

– Represented as data members

• Variables in a class definition

– Each object of class maintains its own copy of

attributes

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

 1 // Fig. 3.5: fig03_05.cpp

 2 // Define class GradeBook that contains a courseName data member

 3 // and member functions to set and get its value;

 4 // Create and manipulate a GradeBook object with these functions.

 5 #include <iostream>

 6 using std::cout;

 7 using std::cin;

 8 using std::endl;

 9

10 #include <string> // program uses C++ standard string class

11 using std::string;

12 using std::getline;

13

14 // GradeBook class definition

15 class GradeBook

16 {

17 public:

18 // function that sets the course name

19 void setCourseName(string name)

20 {

21 courseName = name; // store the course name in the object

22 } // end function setCourseName

23

24 // function that gets the course name

25 string getCourseName()

26 {

27 return courseName; // return the object's courseName

28 } // end function getCourseName

29

set function modifies private data

get function accesses private data

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

30 // function that displays a welcome message

31 void displayMessage()

32 {

33 // this statement calls getCourseName to get the

34 // name of the course this GradeBook represents

35 cout << "Welcome to the grade book for\n" << getCourseName() << "!"

36 << endl;

37 } // end function displayMessage

38 private:

39 string courseName; // course name for this GradeBook

40 }; // end class GradeBook

41

42 // function main begins program execution

43 int main()

44 {

45 string nameOfCourse; // string of characters to store the course name

46 GradeBook myGradeBook; // create a GradeBook object named myGradeBook

47

48 // display initial value of courseName

49 cout << "Initial course name is: " << myGradeBook.getCourseName()

50 << endl;

51

Use set and get functions,

even within the class

Accessing private data outside class definition

private members accessible only

to member functions of the class

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

52 // prompt for, input and set course name

53 cout << "\nPlease enter the course name:" << endl;

54 getline(cin, nameOfCourse); // read a course name with blanks

55 myGradeBook.setCourseName(nameOfCourse); // set the course name

56

57 cout << endl; // outputs a blank line

58 myGradeBook.displayMessage(); // display message with new course name

59 return 0; // indicate successful termination

60 } // end main

Initial course name is:

Please enter the course name:
CS101 Introduction to C++ Programming

Welcome to the grade book for
CS101 Introduction to C++ Programming!

Modifying private data from outside the class

definition

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Good Programming Practice 3

• Place a blank line between member-function

definitions to enhance program readability.

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Data Members, set Functions and

get Functions Cont’d

• Access-specifier private

– Makes a data member or member function

accessible only to member functions of the class

– private is the default access for class members

– Data hiding

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Data Members, set Functions and

get Functions Cont’d

• Returning a value from a function

– A function that specifies a return type other than

void

• Must return a value to its calling function

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Software Engineering Observation 1

• As a rule, data members should be declared

private and member functions should be

declared public. (We will see that it is

appropriate to declare certain member

functions private, if they are to be accessed

only by other member functions of the class.)

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Common Programming Error 6

• An attempt by a function, which is not a

member of a particular class (or a friend of

that class), to access a private member of that

class is a compilation error.

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Good Programming Practice 4

• Despite the fact that the public and private

access specifiers may be repeated and

intermixed, list all the public members of a

class first in one group and then list all the

private members in another group. This

focuses the client’s attention on the class’s

public interface, rather than on the class’s

implementation.

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Good Programming Practice 5

• If you choose to list the private members first

in a class definition, explicitly use the private

access specifier despite the fact that private is

assumed by default. This improves program

clarity.

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Software Engineering Observation 2

• Functions and classes declared by a class to

be friends of that class can access the private

members of the class.

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Error-Prevention Tip 1

• Making the data members of a class private

and the member functions of the class public

facilitates debugging because problems with

data manipulations are localized to either the

class’s member functions or the friends of the

class.

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Common Programming Error 7

• Forgetting to return a value from a function

that is supposed to return a value is a

compilation error.

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Data Members, set Functions and get

Functions Cont’d

• Software engineering with set and get

functions

– public member functions that allow clients of a

class to set or get the values of private data

members

– set functions are sometimes called mutators and

get functions are sometimes called accessors

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Data Members, set Functions and get

Functions Cont’d

• Software engineering with set and get

functions Cont’d

– Using set and get functions allows the creator of

the class to control how clients access private data

– Should also be used by other member functions of

the same class

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Good Programming Practice 6

• Always try to localize the effects of changes

to a class’s data members by accessing and

manipulating the data members through their

get and set functions. Changes to the name of

a data member or the data type used to store a

data member then affect only the

corresponding get and set functions, but not

the callers of those functions.

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Software Engineering Observation 3

• It is important to write programs that are

understandable and easy to maintain. Change

is the rule rather than the exception.

Programmers should anticipate that their code

will be modified.

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Software Engineering Observation 4

• The class designer need not provide set or get

functions for each private data item; these

capabilities should be provided only when

appropriate. If a service is useful to the client

code, that service should typically be

provided in the class’s public interface.

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Initializing Objects w/ Constructors

• Constructors

– Functions used to initialize an object’s data when it is

created

• Call made implicitly when object is created

• Must be defined with the same name as the class

• Cannot return values

– Not even void

– Default constructor has no parameters

• The compiler will provide one when a class does not explicitly

include a constructor

– Compiler’s default constructor only calls constructors of data

members that are objects of classes

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

 1 // Fig. 3.7: fig03_07.cpp

 2 // Instantiating multiple objects of the GradeBook class and using

 3 // the GradeBook constructor to specify the course name

 4 // when each GradeBook object is created.

 5 #include <iostream>

 6 using std::cout;

 7 using std::endl;

 8

 9 #include <string> // program uses C++ standard string class

10 using std::string;

11

12 // GradeBook class definition

13 class GradeBook

14 {

15 public:

16 // constructor initializes courseName with string supplied as argument

17 GradeBook(string name)

18 {

19 setCourseName(name); // call set function to initialize courseName

20 } // end GradeBook constructor

21

22 // function to set the course name

23 void setCourseName(string name)

24 {

25 courseName = name; // store the course name in the object

26 } // end function setCourseName

27

Constructor has same name as

class and no return type

Initialize data member

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

28 // function to get the course name

29 string getCourseName()

30 {

31 return courseName; // return object's courseName

32 } // end function getCourseName

33

34 // display a welcome message to the GradeBook user

35 void displayMessage()

36 {

37 // call getCourseName to get the courseName

38 cout << "Welcome to the grade book for\n" << getCourseName()

39 << "!" << endl;

40 } // end function displayMessage

41 private:

42 string courseName; // course name for this GradeBook

43 }; // end class GradeBook

44

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

45 // function main begins program execution

46 int main()

47 {

48 // create two GradeBook objects

49 GradeBook gradeBook1("CS101 Introduction to C++ Programming");

50 GradeBook gradeBook2("CS102 Data Structures in C++");

51

52 // display initial value of courseName for each GradeBook

53 cout << "gradeBook1 created for course: " << gradeBook1.getCourseName()

54 << "\ngradeBook2 created for course: " << gradeBook2.getCourseName()

55 << endl;

56 return 0; // indicate successful termination

57 } // end main

gradeBook1 created for course: CS101 Introduction to C++ Programming
gradeBook2 created for course: CS102 Data Structures in C++

Creating objects implicitly calls the constructor

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Error-Prevention Tip 2

• Unless no initialization of your class’s data

members is necessary (almost never), provide

a constructor to ensure that your class’s data

members are initialized with meaningful

values when each new object of your class is

created.

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Software Engineering Observation 5

• Data members can be initialized in a

constructor of the class or their values may be

set later after the object is created. However, it

is a good software engineering practice to

ensure that an object is fully initialized before

the client code invokes the object’s member

functions. In general, you should not rely on

the client code to ensure that an object gets

initialized properly.

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Placing a Class in a Separate File

for Reusability

• .cpp file is known as a source-code file

• Header files

– Separate files in which class definitions are placed

• Allow compiler to recognize the classes when used

elsewhere

– Generally have .h filename extensions

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Placing a Class in a Separate File

for Reusability Cont’d

• Driver files

– Program used to test software (such as classes)

– Contains a main function so it can be executed

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

 1 // Fig. 3.9: GradeBook.h

 2 // GradeBook class definition in a separate file from main.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6

 7 #include <string> // class GradeBook uses C++ standard string class

 8 using std::string;

 9

10 // GradeBook class definition

11 class GradeBook

12 {

13 public:

14 // constructor initializes courseName with string supplied as argument

15 GradeBook(string name)

16 {

17 setCourseName(name); // call set function to initialize courseName

18 } // end GradeBook constructor

19

20 // function to set the course name

21 void setCourseName(string name)

22 {

23 courseName = name; // store the course name in the object

24 } // end function setCourseName

25

Class definition is in a header file

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

26 // function to get the course name

27 string getCourseName()

28 {

29 return courseName; // return object's courseName

30 } // end function getCourseName

31

32 // display a welcome message to the GradeBook user

33 void displayMessage()

34 {

35 // call getCourseName to get the courseName

36 cout << "Welcome to the grade book for\n" << getCourseName()

37 << "!" << endl;

38 } // end function displayMessage

39 private:

40 string courseName; // course name for this GradeBook

41 }; // end class GradeBook

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

 1 // Fig. 3.10: fig03_10.cpp

 2 // Including class GradeBook from file GradeBook.h for use in main.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6

 7 #include "GradeBook.h" // include definition of class GradeBook

 8

 9 // function main begins program execution

10 int main()

11 {

12 // create two GradeBook objects

13 GradeBook gradeBook1("CS101 Introduction to C++ Programming");

14 GradeBook gradeBook2("CS102 Data Structures in C++");

15

16 // display initial value of courseName for each GradeBook

17 cout << "gradeBook1 created for course: " << gradeBook1.getCourseName()

18 << "\ngradeBook2 created for course: " << gradeBook2.getCourseName()

19 << endl;

20 return 0; // indicate successful termination

21 } // end main

gradeBook1 created for course: CS101 Introduction to C++ Programming
gradeBook2 created for course: CS102 Data Structures in C++

Including the header file causes the

class definition to be copied into the file

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Placing a Class in a Separate File for

Reusability Cont’d

• #include preprocessor directive

– Used to include header files

• Instructs C++ preprocessor to replace directive with a

copy of the contents of the specified file

– Quotes indicate user-defined header files

• Preprocessor first looks in current directory

– If the file is not found, looks in C++ Standard Library

directory

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Placing a Class in a Separate File for

Reusability Cont’d

• #include preprocessor directive Cont’d

– Angle brackets indicate C++ Standard Library

• Preprocessor looks only in C++ Standard Library

directory

• Creating objects

– Compiler must know size of object

• C++ objects typically contain only data members

• Compiler creates one copy of class’s member functions

– This copy is shared among all the class’s objects

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Error-Prevention Tip 3

• To ensure that the preprocessor can locate

header files correctly, #include preprocessor

directives should place the names of user-

defined header files in quotes (e.g.,

"GradeBook.h") and place the names of C++

Standard Library header files in angle

brackets (e.g., <iostream>).

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Separating Interface from

Implementation
• Interface

– Describes what services a class’s clients can use

and how to request those services

• But does not reveal how the class carries out the

services

• A class definition that lists only member function

names, return types and parameter types

– Function prototypes

– A class’s interface consists of the class’s public

member functions (services)

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Separating Interface from

Implementation Cont’d
• Separating interface from implementation

– Client code should not break if the

implementation changes, as long as the interface

stays the same

– Define member functions outside the class

definition, in a separate source-code file

• In source-code file for a class

– Use binary scope resolution operator (::) to “tie” each

member function to the class definition

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Separating Interface from

Implementation Cont’d
• Separating interface from implementation

Cont’d

– Define member functions outside the class

definition, in a separate source-code file Cont’d

• Implementation details are hidden

– Client code does not need to know the implementation

– In the header file for a class

• Function prototypes describe the class’s public

interface

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

 1 // Fig. 3.11: GradeBook.h

 2 // GradeBook class definition. This file presents GradeBook's public

 3 // interface without revealing the implementations of GradeBook's member

 4 // functions, which are defined in GradeBook.cpp.

 5 #include <string> // class GradeBook uses C++ standard string class

 6 using std::string;

 7

 8 // GradeBook class definition

 9 class GradeBook

10 {

11 public:

12 GradeBook(string); // constructor that initializes courseName

13 void setCourseName(string); // function that sets the course name

14 string getCourseName(); // function that gets the course name

15 void displayMessage(); // function that displays a welcome message

16 private:

17 string courseName; // course name for this GradeBook

18 }; // end class GradeBook

Interface contains data members

and member function prototypes

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Common Programming Error 8

• Forgetting the semicolon at the end of a

function prototype is a syntax error.

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Good Programming Practice 7

• Although parameter names in function

prototypes are optional (they are ignored by

the compiler), many programmers use these

names for documentation purposes.

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Error-Prevention Tip 4

• Parameter names in a function prototype

(which, again, are ignored by the compiler)

can be misleading if wrong or confusing

names are used. For this reason, many

programmers create function prototypes by

copying the first line of the corresponding

function definitions (when the source code for

the functions is available), then appending a

semicolon to the end of each prototype.

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Common Programming Error 9

• When defining a class’s member functions

outside that class, omitting the class name and

binary scope resolution operator (::) preceding

the function names causes compilation errors.

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

 1 // Fig. 3.12: GradeBook.cpp

 2 // GradeBook member-function definitions. This file contains

 3 // implementations of the member functions prototyped in GradeBook.h.

 4 #include <iostream>

 5 using std::cout;

 6 using std::endl;

 7

 8 #include "GradeBook.h" // include definition of class GradeBook

 9

10 // constructor initializes courseName with string supplied as argument

11 GradeBook::GradeBook(string name)

12 {

13 setCourseName(name); // call set function to initialize courseName

14 } // end GradeBook constructor

15

16 // function to set the course name

17 void GradeBook::setCourseName(string name)

18 {

19 courseName = name; // store the course name in the object

20 } // end function setCourseName

21

Binary scope resolution operator

“ties” a function to its class

GradeBook implementation is

placed in a separate source-code file

Include the header file to access
the class name GradeBook

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

22 // function to get the course name

23 string GradeBook::getCourseName()

24 {

25 return courseName; // return object's courseName

26 } // end function getCourseName

27

28 // display a welcome message to the GradeBook user

29 void GradeBook::displayMessage()

30 {

31 // call getCourseName to get the courseName

32 cout << "Welcome to the grade book for\n" << getCourseName()

33 << "!" << endl;

34 } // end function displayMessage

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

 1 // Fig. 3.13: fig03_13.cpp

 2 // GradeBook class demonstration after separating

 3 // its interface from its implementation.

 4 #include <iostream>

 5 using std::cout;

 6 using std::endl;

 7

 8 #include "GradeBook.h" // include definition of class GradeBook

 9

10 // function main begins program execution

11 int main()

12 {

13 // create two GradeBook objects

14 GradeBook gradeBook1("CS101 Introduction to C++ Programming");

15 GradeBook gradeBook2("CS102 Data Structures in C++");

16

17 // display initial value of courseName for each GradeBook

18 cout << "gradeBook1 created for course: " << gradeBook1.getCourseName()

19 << "\ngradeBook2 created for course: " << gradeBook2.getCourseName()

20 << endl;

21 return 0; // indicate successful termination

22 } // end main

gradeBook1 created for course: CS101 Introduction to C++ Programming
gradeBook2 created for course: CS102 Data Structures in C++

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Separating Interface from

Implementation Cont’d
• The Compilation and Linking Process

– Source-code file is compiled to create the class’s

object code (source-code file must #include

header file)

• Class implementation programmer only needs to

provide header file and object code to client

– Client must #include header file in their own code

• So compiler can ensure that the main function creates

and manipulates objects of the class correctly

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Separating Interface from

Implementation Cont’d

• The Compilation and Linking Process Cont’d

– To create an executable application

• Object code for client code must be linked with the

object code for the class and the object code for any

C++ Standard Library object code used in the

application

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Compilation and Linking Process

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Validating Data with set Functions

• set functions can validate data

– Known as validity checking

– Keeps object in a consistent state

• The data member contains a valid value

– Can return values indicating that attempts were made to

assign invalid data

• string member functions

– length returns the number of characters in the string

– Substr returns specified substring within the string

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

 1 // Fig. 3.15: GradeBook.h

 2 // GradeBook class definition presents the public interface of

 3 // the class. Member-function definitions appear in GradeBook.cpp.

 4 #include <string> // program uses C++ standard string class

 5 using std::string;

 6

 7 // GradeBook class definition

 8 class GradeBook

 9 {

10 public:

11 GradeBook(string); // constructor that initializes a GradeBook object

12 void setCourseName(string); // function that sets the course name

13 string getCourseName(); // function that gets the course name

14 void displayMessage(); // function that displays a welcome message

15 private:

16 string courseName; // course name for this GradeBook

17 }; // end class GradeBook

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

 1 // Fig. 3.16: GradeBook.cpp

 2 // Implementations of the GradeBook member-function definitions.

 3 // The setCourseName function performs validation.

 4 #include <iostream>

 5 using std::cout;

 6 using std::endl;

 7

 8 #include "GradeBook.h" // include definition of class GradeBook

 9

10 // constructor initializes courseName with string supplied as argument

11 GradeBook::GradeBook(string name)

12 {

13 setCourseName(name); // validate and store courseName

14 } // end GradeBook constructor

15

16 // function that sets the course name;

17 // ensures that the course name has at most 25 characters

18 void GradeBook::setCourseName(string name)

19 {

20 if (name.length() <= 25) // if name has 25 or fewer characters

21 courseName = name; // store the course name in the object

22

set functions perform validity checking to
keep courseName in a consistent state

Constructor calls set function

to perform validity checking

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

23 if (name.length() > 25) // if name has more than 25 characters

24 {

25 // set courseName to first 25 characters of parameter name

26 courseName = name.substr(0, 25); // start at 0, length of 25

27

28 cout << "Name \"" << name << "\" exceeds maximum length (25).\n"

29 << "Limiting courseName to first 25 characters.\n" << endl;

30 } // end if

31 } // end function setCourseName

32

33 // function to get the course name

34 string GradeBook::getCourseName()

35 {

36 return courseName; // return object's courseName

37 } // end function getCourseName

38

39 // display a welcome message to the GradeBook user

40 void GradeBook::displayMessage()

41 {

42 // call getCourseName to get the courseName

43 cout << "Welcome to the grade book for\n" << getCourseName()

44 << "!" << endl;

45 } // end function displayMessage

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

 1 // Fig. 3.17: fig03_17.cpp

 2 // Create and manipulate a GradeBook object; illustrate validation.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6

 7 #include "GradeBook.h" // include definition of class GradeBook

 8

 9 // function main begins program execution

10 int main()

11 {

12 // create two GradeBook objects;

13 // initial course name of gradeBook1 is too long

14 GradeBook gradeBook1("CS101 Introduction to Programming in C++");

15 GradeBook gradeBook2("CS102 C++ Data Structures");

16

Constructor will call set function

to perform validity checking

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

17 // display each GradeBook's courseName

18 cout << "gradeBook1's initial course name is: "

19 << gradeBook1.getCourseName()

20 << "\ngradeBook2's initial course name is: "

21 << gradeBook2.getCourseName() << endl;

22

23 // modify myGradeBook's courseName (with a valid-length string)

24 gradeBook1.setCourseName("CS101 C++ Programming");

25

26 // display each GradeBook's courseName

27 cout << "\ngradeBook1's course name is: "

28 << gradeBook1.getCourseName()

29 << "\ngradeBook2's course name is: "

30 << gradeBook2.getCourseName() << endl;

31 return 0; // indicate successful termination

32 } // end main

Name "CS101 Introduction to Programming in C++" exceeds maximum length (25).
Limiting courseName to first 25 characters.

gradeBook1's initial course name is: CS101 Introduction to Pro
gradeBook2's initial course name is: CS102 C++ Data Structures

gradeBook1's course name is: CS101 C++ Programming
gradeBook2's course name is: CS102 C++ Data Structures

Call set function to perform validity checking

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Software Engineering Observation 6

• Making data members private and controlling

access, especially write access, to those data

members through public member functions

helps ensure data integrity.

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Error-Prevention Tip 5

• The benefits of data integrity are not

automatic simply because data members are

made private—the programmer must provide

appropriate validity checking and report the

errors.

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Software Engineering Observation 7

• Member functions that set the values of

private data should verify that the intended

new values are proper; if they are not, the set

functions should place the private data

members into an appropriate state.

