
© C O P Y R I G H T S 2 0 2 3 E O M , H Y E O N S A N G A L L R I G H T S

R E S E R V E D

엄현상(Eom, Hyeonsang)

School of Computer Science and Engineering

Seoul National University

- Good Programming Style Java

- Q&A

© C O P Y R I G H T S 2 0 2 3 E O M , H Y E O N S A N G A L L R I G H T S

R E S E R V E D

Outline

Good Programming Style JAVA
Name Convention

• Use full English descriptions for names. Avoid using

abbreviations.

– For example, use names like firstName, lastName, and middleInitial

rather than the shorter versions fName, lName, and mi.

• Avoid overly long names (greater than 15 characters).

– For example, setTheLengthField should be shortened to setLength.

• Avoid names that are very similar or differ only in case.

– For example, avoid using the names product, products, and Products in

the same program for fear of mixing them up.

http://www.cwu.edu/

double tax1; // sales tax rate (example of poor variable name)

double tax2; // income tax rate (example of poor variable name)

double salesTaxRate; //no comments required due to

double incomeTaxRate; //self-documenting variable names

Good Programming Style JAVA
Name Convention Cont’d

• Variable Naming Conventions

– Avoid generic names like number or temp whose purpose is unclear.

– Compose variable names using mixed case letters starting with a lower

case letter.

• For example, use salesOrder rather than SalesOrder or sales_order.

– Use plural names for arrays.

• For example, use testScores instead of testScore.

– Exception: for loop counter variables are often named simply i, j, or k,

and declared local to the for loop whenever possible.

for (int i = 0; i < MAX_TEMPERATURE; i++)

{

boilingPoint = boilingPoint + 1;

}

http://www.cwu.edu/

Good Programming Style JAVA
Name Convention Cont’d

• Variable Naming Conventions Cont’d

– Declaring and commenting local variables

• Declare each local variable on its own line of code. Do not group variables,

separated by commas as a short-cut to declaring each on its own line.

• If the meaning and use of the variable is not clear, add an endline comment

(//) stating what the variable is used for and why. However, a better

solution is to choose a meaningful name to avoid the need for the endline

comment.

• Whenever possible, initialize the variable with its starting value in the

declaration statement.

http://www.cwu.edu/

Good Programming Style JAVA

• Constant Naming Conventions

– Use ALL_UPPER_CASE for your named constants, separating words

with the underscore character. For example, use TAX_RATE rather

than taxRate or TAXRATE.

– Avoid using magic numbers in the code. Magic numbers are actual

numbers like 27 that appear in the code that require the reader to figure

out what 27 is being used for. Consider using named constants for any

number other than 0 and 1.

day = (3 + numberOfDays) % 7; //NO! uses magic numbers

final int WEDNESDAY = 3;

final int DAYS_IN_WEEK = 7;

day = (WEDNESDAY + numberOfDays) % DAYS_IN_WEEK;

//Yes, self-documenting

http://www.cwu.edu/

Good Programming Style JAVA
Name Convention Cont’d

• Method Naming Conventions

– Try to come up with meaningful method names that succinctly

describe the purpose of the method, making your code self-

documenting and reducing the need for additional comments.

– Compose method names using mixed case letters, beginning with a

lower case letter and starting each subsequent word with an upper case

letter.

– Begin method names with a strong action verb (for example,

deposit). If the verb is not descriptive enough by itself, include a noun

(for example, addInterest). Add adjectives if necessary to clarify the

noun (for example, convertToEuroDollars).

http://www.cwu.edu/

Good Programming Style JAVA
Name Convention Cont’d

• Method Naming Conventions Cont’d

– Use the prefixes get and set for getter and setter methods. Getter

methods merely return the value of a instance variable; setter methods

change the value of a instance variable. For example, use the method

names getBalance and setBalance to access or change the instance

variable balance.

– If the method returns a boolean value, use is or has as the prefix for

the method name. For example, use isOverdrawn or hasCreditLeft for

methods that return true or false values. Avoid the use of the word not

in the boolean method name, use the ! operator instead.

For example, use !isOverdrawn instead of isNotOverdrawn.

http://www.cwu.edu/

Good Programming Style JAVA
Name Convention Cont’d

• Parameter Naming Conventions

– With formal parameter names, follow the same naming conventions

as with variables, i.e. use mixed case, begin with a lower case letter,

and begin each subsequent word with an upper-case letter

– Consider using the prefix a or an with parameter names. This helps

make the parameter distinguishable from local and instance variables.

– Occasionally, with very general purpose methods, the names chosen

may be rather generic (for example, aNumber). However, most of the

time the parameter names should succinctly describe the type of value

being passed into the method.

public void deposit(long anAccountNumber, double aDepositAmount) { ... }

http://www.cwu.edu/

Good Programming Style JAVA
Commenting Convention

• Use comments to provide overviews or summaries of chunks

of code and to provide additional information that is not

readily available in the code itself.

• Comment the details of nontrivial or non obvious design

decisions; avoid comments that merely duplicate information

that is present in and clear from reading the code.

http://www.cwu.edu/

Good Programming Style JAVA
Commenting Convention Cont’d

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

• File Header Comments

– File header comments provide readers and graders with the

information they need to find your project on the network, identify the

program's author, and to collect statistics on the project's difficulty

based on the hours required to complete the program.

//**

// Assignment: Program 2

// Account: (Enter your snu account number here)

//

// Author: (Enter your full name here)

//

// Completion time: (Enter the total number of hours you

// spent on the assignment)

//

// Honor Code: I pledge that this program represents my own

// program code. I received help from (enter the names of

// others that helped with the assignment, write no one if

// you received no help) in designing and debugging my program.

//***

Good Programming Style JAVA
Commenting Convention Cont’d

• Single-Line Comments

– Use single-line comments, also called inline comments, to provide

brief summary comments for chunks of code.

– Proceed single-line comments with a blank line and align the comment

with the code it summarizes. Do not feel the need to comment every

single line of code, rather summarize chunks of code between 3 to 7

lines in length.

– Begin single-line comments with a double slash (//) that tells the

compiler to ignore the rest of the line. Note: do not place any characters

between the two slashes.

// Compute the exam average score for the midterm exam

sumOfScores = 0;

for (int i = 0; i < scores.length; i++)

sumOfScores = sumOfScores + scores[i];

average = float(sumOfScores) / scores.length;

http://www.cwu.edu/

Good Programming Style JAVA
Commenting Convention Cont’d

• Trailing Comments

– Trailing comments are used to provide an explanation for a single line

of code. Begin trailing comments with a double slash (//) and place

them to the right of the line of code they reference.

– Trailing comments are used to explain tricky code, specify what

abbreviated variable names refer to, or otherwise clarify unclear lines

of code.

– In general, avoid the use of trailing comments. Instead rewrite tricky

or unclear code, use meaningful variable names, and strive for self-

documenting code.

ss = s1 + s2 + s3; //add the three scores into the sum

a = float(ss) / x; //calculate the mean of the scores

Note:

This is an example of the WRONG WAY to comment a program

http://www.cwu.edu/

Good Programming Style JAVA
Formatting

• Formatting refers to the indentation, alignment, and

use of white space to lay out your program to increase

its readability by others.

• Consistency is the key to producing readable code.

While many can argue to merits of 3 versus 4 spaces

of indentation, placement of curly braces, etc., the

real key is to adopt a formatting style and keep to it.

http://www.cwu.edu/

Good Programming Style JAVA
Formatting

• Indentation

– Use three spaces for indentation to indicate nesting of control

structures.

public class HelloWorld

{

...public void greetUser(int currentHour)

...{

......System.out.print("Good");

......if (currentHour < AFTERNOON)

......{

.........System.out.println(" Morning");

......}

......else if (currentHour < EVENING)

......{

.........System.out.println("Afternoon");

......}

......else

......{

.........System.out.println("Evening");

......}

...}

}

Note: The period char (.) is used to show

indentation

http://www.cwu.edu/

Good Programming Style JAVA
Formatting

• White Space

– Use blank lines and blank spaces to improve the readability of your

code.

– Use blank lines to separate chunks of program code. Chunks are

logical groups of program statements (generally 3 to 7 lines in length)

and usually proceeded with a single-line summary comment. Use one

blank line before every program chunk. Use two blank lines before the

start of each new method within a class.

– Use one blank space on both sides of operator symbols, after commas

in argument lists, and after semicolons in for statements.

http://www.cwu.edu/

Good Programming Style JAVA
Formatting

http://www.cwu.edu/

• Line Length

– Avoid lines longer than 80 characters When an expression will not fit

on a single line of 80 characters, break it according to these general

principles:

• Break after a comma.

• Break before an operator.

• Align the new line with the beginning of the expression at the same

level on the previous line.

someMethod(longExpression1, longExpression2, longExpression3,

longExpression4, longExpression5);

longName1 = longName2 * (longName3 + longName4 - longName5)

+ 4 * longname6;

