A1 & (Eom, Hyeonsang)
School of Computer Science and Engineering
Seoul National University

©COPYRIGHTS 2023 EOM, HYEONSANG ALL RIGHTS
RESERVED



Outline

- Good Programming Style C++
- Q&A

©COPYRIGHTS 2023 EOM, HYEONSANG ALL RIGHTS
RESERVED




Guidelines for Writing C/C++ Code

 Point of a Style Guide
— Greater Uniformity in Appearance of Source Code

 Benefit

— Enhanced Readability and Hence Maintainability for the
Code
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File Contents

* Files as Modules to Group Functionality
— Avoiding Duplicating Functionality in Separate Files

 Header Files
— To Declare Public Interfaces

e Code Files

— To Define Implementations

 |f a module calls a function defined externally. it is desirable to
include that function’s associated .h file in the implementation of
the module
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Header (Interface) File Contents

Copyright Statement Comment

Module Abstraction Comment

Revision-String Comment; e.g., $1d$

Multiple Inclusion #ifdef(a.k.a. “include guard”)
Other Preprocessor Directives, #include and #define
C/C++ #ifdef
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Header (Interface) File Contents Cont'd

« Data Type Definitions (Classes and Structures)
* typedefs

o C/C++ #endif

« Multiple Inclusion #endif

#ifdef _ cplusplus // predefined (double underscore)

extern ‘C”{ // Linkage directive informs the compiler not to encode f/n
#endif

#ifdef _ cplusplus

}
#endif
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gcc/g++ Basic Options

e -D
— Set the Value of a Symbol
« -| (Capital 1)

— Include Files in a Non-Standard Directory

#define INFO_FILE “infofile”

{7

martini:~$gcc —c -DINFO_FILE=\ “infofile \ "backup
martini:~$gcc -¢c -DUSE_ODIR backup2
martini:~$gcc —c -I../include backup3.c

indicate where to find the header files

#define USE_ODIR
#ifdef USE_ODIR
#else

#endif
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Code File Contents

Copyright Statement Comment
Module Abstraction Comment
Preprocessor Directives, #include and #define

Revision-String Variable

— Implementation-File Revision String Should Be Stored as a
Program Variable
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Code File Contents Cont'd

static const char rcs_id[] = “$1d$”;

e Other Module-Specific Variable Definitions
 Local Function Interface Prototypes
 Class/Function Definitions
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File Format

 Spatial Structure lllustrating the Logical Structure
— Blank Lines to Help Separate Different Ideas
— Indentation to Show Logical Relationships
— Spaces to Separate Functionality
— Each Block to Do Exact One Thing
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File Format Cont'd

 All Function Definitions and Declarations Starting in
Column Zero

— Return Value Type, Function Interface Signature (Name
and Argument List), and Function Body Open and End
Brackets Put Each on a Separate Line

 Single Space to Separate All Operators from Their
Operands

— Exceptions: ->, ., () and [] Operators
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File Format Cont'd

 Four Spaces for Each Level of Indentation

 Lines with No Longer Than 80 Characters
— Breaking After a Comma
— Breaking Before an Operator
— Breaking Lines to Illustrate Logical Relation

— Aligning the Newline with the Beginning of the Expression
at the Same Level on the Previous Line
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File Format Cont'd

« Pure-Block, Fully Bracketed Style for Blocks of Code

— Opening Bracket Put at the End of the Line
« EXxception: conditions that are broken across multiple lines

new shape = affine transform(coords, translation,
rotation) ;

if ( ( (new _shape.
(new shape.

( (new shape.
(new_shape.

> left border) &&

< right border) ) &&
> bottom border) &&
< top border) ) )

el N

{
}

draw (new_shape) ;
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Unigue to C++

Starting public, protected, private and friend Labels
In Column Zero of Class Declarations

Declaring the Members in a Consistent Order

Putting Simple Inline Function Definitions on the
Same Line as Their Definitions

— Using a Pure-Block Style with Four-Space Indentation for
Complex Inline Functions

Avoiding Putting Complex Function Implementations
Into .h Files



Class Declaration Format

class Type : public Parent {

private:
int x ;
int v_;

public:
Type () ;
Type (int x) : x (x) { }

~Type () ;

int get x() const { return x ; }
void set x(const int new x) { x = new x; }

void display () {

}
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Choosing Meaningful Names

* Variable Names

— Lower Case for All Variable Names with an Underscore as
a Separator in C/C++
* E.g., boiling_point
— Variable Names Using Mixed Case Letters Starting with a
Lower Case Letter And Starting Each Subsequent Word
with an Upper Case Letter in Java
« E.g., boilingPoint
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Choosing Meaningful Names Cont'd

e Variable Names Cont’d

— Careful Choice
 Consistent names
« Similar names for similar data types
» No names that are homophones
» Names that say what the variable represents; i.e., nouns
» No generic names such as tmp, buf, and reg
 No intentionally misspelled words such as lo or lite
* No abbreviations
* No overly long names
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Choosing Meaningful Names Cont'd

 Function Names

— Lower Case Letters for Public Function Names with an
Underscore as a Separator

— Consistent and Informative Names

« Strong verb that indicates the purpose for a function that returns no
value

» Name that indicates the meaning of the value returned for a
function that returns a value

 Method Names

— Method Names Using Mixed Case Letters Starting with a
Lower Case Letter And Starting Each Subsequent Word
with an Upper Case Letter
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Choosing Meaningful Names Cont'd

 Classes, Structures, and Type Definitions

— Capitalizing the First Letter of the Name of Each Type That
Is Defined

e Constants

— Using ALL _UPPER_CASE for Your Named Constants,
Separating Words with the Underscore Character
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Comments

. Describing Why Code Does What It Does

End-Line Comments
— Variable Declarations
— Marking #if/#endif Statements

Short (Single-Line) Comments

Block Comments
— Function Descriptions

Bold Comments
— Delimiting Major Sections of Code
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lllustrations : Comments

EAE o e o e o o e e e e

* Bold comment.
A L LI E SRS EEE L L EE S EEEEEEEEEEEERESESEEEEEEEREEEEEHESSEEXX.]

2
f*
* Block comment.

*x/

/* Short (single-line) comment. */

int i; /* end-line comment */
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Syntax and Language Issues

Each Line to Do Exact One Thing

No Use of Side-Effects

Clear Structure

Trivial Branch

while() { ... } Rather Thando { ... } while ();
Short Control Structure

No Deeply Nested Code

No Use of Global Variable
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Syntax and Language Issues Cont'd

No Preprocessor Constants (#defines)
— Declaring Vars of Proper Types as consts
— Defining enums for Related Sets of Integer Constants

Function Declarations/Prototypes for All
Functions

Explicit Assumptions about the Condition of
Input Data to Routines

Checking the Return Values of All Library
Function Calls

Informative Error Messages
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Formatting

« Formatting Refers to the Indentation, Alignment, And
Use of White Space to Lay Out Your Program to
Increase Its Readability by Others

« Consistency Is the Key to Producing Readable Code

— While Many Can Argue to Merits of 3 Versus 4 Spaces of
Indentation, Placement of Curly Braces, Etc.

Real Key Is to Adopt a Formatting Style
And Keep to It!




