
© C O P Y R I G H T S 2 0 2 3 E O M , H Y E O N S A N G A L L R I G H T S

R E S E R V E D

엄현상(Eom, Hyeonsang)

School of Computer Science and Engineering

Seoul National University

- Good Programming Style C++

- Q&A

© C O P Y R I G H T S 2 0 2 3 E O M , H Y E O N S A N G A L L R I G H T S

R E S E R V E D

Outline

Guidelines for Writing C/C++ Code

• Point of a Style Guide

– Greater Uniformity in Appearance of Source Code

• Benefit

– Enhanced Readability and Hence Maintainability for the

Code

www.literateprogramming.com

File Contents

• Files as Modules to Group Functionality

– Avoiding Duplicating Functionality in Separate Files

• Header Files

– To Declare Public Interfaces

• Code Files

– To Define Implementations

• If a module calls a function defined externally. it is desirable to

include that function’s associated .h file in the implementation of

the module

www.literateprogramming.com

Header (Interface) File Contents

• Copyright Statement Comment

• Module Abstraction Comment

• Revision-String Comment; e.g., Id

• Multiple Inclusion #ifdef(a.k.a. “include guard”)

• Other Preprocessor Directives, #include and #define

• C/C++ #ifdef

www.literateprogramming.com

Header (Interface) File Contents Cont’d

• Data Type Definitions (Classes and Structures)

• typedefs

• C/C++ #endif

• Multiple Inclusion #endif

#ifdef __cplusplus // predefined (double underscore)

extern ‘C”{ // Linkage directive informs the compiler not to encode f/n

#endif

…

#ifdef __cplusplus

}

#endif

www.literateprogramming.com

gcc/g++ Basic Options

• -D

– Set the Value of a Symbol

• -I (Capital i)

– Include Files in a Non-Standard Directory

martini:~$gcc –c –DINFO_FILE=＼“infofile＼”backup1.c

martini:~$gcc -c -DUSE_ODIR backup2.c

martini:~$gcc –c -I../include backup3.c

#define INFO_FILE “infofile”

#define USE_ODIR

#ifdef USE_ODIR

…

#else

…

#endif

indicate where to find the header files

www.literateprogramming.com

Code File Contents

• Copyright Statement Comment

• Module Abstraction Comment

• Preprocessor Directives, #include and #define

• Revision-String Variable

– Implementation-File Revision String Should Be Stored as a

Program Variable

www.literateprogramming.com

Code File Contents Cont’d

• Other Module-Specific Variable Definitions

• Local Function Interface Prototypes

• Class/Function Definitions

static const char rcs_id[] = “Id”;

www.literateprogramming.com

File Format

• Spatial Structure Illustrating the Logical Structure

– Blank Lines to Help Separate Different Ideas

– Indentation to Show Logical Relationships

– Spaces to Separate Functionality

– Each Block to Do Exact One Thing

www.literateprogramming.com

File Format Cont’d

• All Function Definitions and Declarations Starting in

Column Zero

– Return Value Type, Function Interface Signature (Name

and Argument List), and Function Body Open and End

Brackets Put Each on a Separate Line

• Single Space to Separate All Operators from Their

Operands

– Exceptions: ->, ., () and [] Operators

www.literateprogramming.com

File Format Cont’d

• Four Spaces for Each Level of Indentation

• Lines with No Longer Than 80 Characters

– Breaking After a Comma

– Breaking Before an Operator

– Breaking Lines to Illustrate Logical Relation

– Aligning the Newline with the Beginning of the Expression

at the Same Level on the Previous Line

www.literateprogramming.com

File Format Cont’d

• Pure-Block, Fully Bracketed Style for Blocks of Code

– Opening Bracket Put at the End of the Line

• Exception: conditions that are broken across multiple lines

www.literateprogramming.com

Unique to C++

• Starting public, protected, private and friend Labels
in Column Zero of Class Declarations

• Declaring the Members in a Consistent Order

• Putting Simple Inline Function Definitions on the
Same Line as Their Definitions

– Using a Pure-Block Style with Four-Space Indentation for
Complex Inline Functions

• Avoiding Putting Complex Function Implementations
into .h Files

www.literateprogramming.com

Class Declaration Format

www.literateprogramming.com

Choosing Meaningful Names

• Variable Names

– Lower Case for All Variable Names with an Underscore as

a Separator in C/C++

• E.g., boiling_point

– Variable Names Using Mixed Case Letters Starting with a

Lower Case Letter And Starting Each Subsequent Word

with an Upper Case Letter in Java

• E.g., boilingPoint

www.literateprogramming.com

Choosing Meaningful Names Cont’d

• Variable Names Cont’d

– Careful Choice

• Consistent names

• Similar names for similar data types

• No names that are homophones

• Names that say what the variable represents; i.e., nouns

• No generic names such as tmp, buf, and reg

• No intentionally misspelled words such as lo or lite

• No abbreviations

• No overly long names

www.literateprogramming.com

Choosing Meaningful Names Cont’d

• Function Names

– Lower Case Letters for Public Function Names with an
Underscore as a Separator

– Consistent and Informative Names

• Strong verb that indicates the purpose for a function that returns no
value

• Name that indicates the meaning of the value returned for a
function that returns a value

• Method Names
– Method Names Using Mixed Case Letters Starting with a

Lower Case Letter And Starting Each Subsequent Word
with an Upper Case Letter

www.literateprogramming.com

Choosing Meaningful Names Cont’d

• Classes, Structures, and Type Definitions

– Capitalizing the First Letter of the Name of Each Type That

Is Defined

• Constants

– Using ALL_UPPER_CASE for Your Named Constants,

Separating Words with the Underscore Character

www.literateprogramming.com

Comments

: Describing Why Code Does What It Does

• End-Line Comments

– Variable Declarations

– Marking #if/#endif Statements

• Short (Single-Line) Comments

• Block Comments

– Function Descriptions

• Bold Comments

– Delimiting Major Sections of Code

www.literateprogramming.com

Illustrations : Comments

www.literateprogramming.com

Syntax and Language Issues

• Each Line to Do Exact One Thing

• No Use of Side-Effects

• Clear Structure

• Trivial Branch

• while() { … } Rather Than do { … } while ();

• Short Control Structure

• No Deeply Nested Code

• No Use of Global Variable

www.literateprogramming.com

Syntax and Language Issues Cont’d

• No Preprocessor Constants (#defines)
– Declaring Vars of Proper Types as consts

– Defining enums for Related Sets of Integer Constants

• Function Declarations/Prototypes for All
Functions

• Explicit Assumptions about the Condition of
Input Data to Routines

• Checking the Return Values of All Library
Function Calls

• Informative Error Messages

www.literateprogramming.com

Formatting

• Formatting Refers to the Indentation, Alignment, And
Use of White Space to Lay Out Your Program to
Increase Its Readability by Others

• Consistency Is the Key to Producing Readable Code

– While Many Can Argue to Merits of 3 Versus 4 Spaces of
Indentation, Placement of Curly Braces, Etc.

www.literateprogramming.com

Real Key Is to Adopt a Formatting Style
And Keep to It!

