A1 & (Eom, Hyeonsang)
School of Computer Science and Engineering
Seoul National University

©COPYRIGHTS 2023 EOM, HYEONSANG ALL RIGHTS
RESERVED

Outline

- Good Programming Style C++
- Q&A

©COPYRIGHTS 2023 EOM, HYEONSANG ALL RIGHTS
RESERVED

Guidelines for Writing C/C++ Code

 Point of a Style Guide
— Greater Uniformity in Appearance of Source Code

 Benefit

— Enhanced Readability and Hence Maintainability for the
Code

www.literateprogramming.com

File Contents

* Files as Modules to Group Functionality
— Avoiding Duplicating Functionality in Separate Files

 Header Files
— To Declare Public Interfaces

e Code Files

— To Define Implementations

 |f a module calls a function defined externally. it is desirable to
include that function’s associated .h file in the implementation of
the module

www.literateprogramming.com

Header (Interface) File Contents

Copyright Statement Comment

Module Abstraction Comment

Revision-String Comment; e.g., $1d$

Multiple Inclusion #ifdef(a.k.a. “include guard”)
Other Preprocessor Directives, #include and #define
C/C++ #ifdef

www.literateprogramming.com

Header (Interface) File Contents Cont'd

« Data Type Definitions (Classes and Structures)
* typedefs

o C/C++ #endif

« Multiple Inclusion #endif

#ifdef _ cplusplus // predefined (double underscore)

extern ‘C”{ // Linkage directive informs the compiler not to encode f/n
#endif

#ifdef _ cplusplus

}
#endif

www.literateprogramming.com

gcc/g++ Basic Options

e -D
— Set the Value of a Symbol
« -| (Capital 1)

— Include Files in a Non-Standard Directory

#define INFO_FILE “infofile”

{7

martini:~$gcc —c -DINFO_FILE=\ “infofile \ "backup
martini:~$gcc -¢c -DUSE_ODIR backup2
martini:~$gcc —c -I../include backup3.c

indicate where to find the header files

#define USE_ODIR
#ifdef USE_ODIR
#else

#endif

www.literateprogramming.com

Code File Contents

Copyright Statement Comment
Module Abstraction Comment
Preprocessor Directives, #include and #define

Revision-String Variable

— Implementation-File Revision String Should Be Stored as a
Program Variable

www.literateprogramming.com

Code File Contents Cont'd

static const char rcs_id[] = “$1d$”;

e Other Module-Specific Variable Definitions
 Local Function Interface Prototypes
 Class/Function Definitions

www.literateprogramming.com

File Format

 Spatial Structure lllustrating the Logical Structure
— Blank Lines to Help Separate Different Ideas
— Indentation to Show Logical Relationships
— Spaces to Separate Functionality
— Each Block to Do Exact One Thing

www.literateprogramming.com

File Format Cont'd

 All Function Definitions and Declarations Starting in
Column Zero

— Return Value Type, Function Interface Signature (Name
and Argument List), and Function Body Open and End
Brackets Put Each on a Separate Line

 Single Space to Separate All Operators from Their
Operands

— Exceptions: ->, ., () and [] Operators

www.literateprogramming.com

File Format Cont'd

 Four Spaces for Each Level of Indentation

 Lines with No Longer Than 80 Characters
— Breaking After a Comma
— Breaking Before an Operator
— Breaking Lines to Illustrate Logical Relation

— Aligning the Newline with the Beginning of the Expression
at the Same Level on the Previous Line

www.literateprogramming.com

File Format Cont'd

« Pure-Block, Fully Bracketed Style for Blocks of Code

— Opening Bracket Put at the End of the Line
« EXxception: conditions that are broken across multiple lines

new shape = affine transform(coords, translation,
rotation) ;

if (((new _shape.
(new shape.

((new shape.
(new_shape.

> left border) &&

< right border)) &&
> bottom border) &&
< top border)))

el N

{
}

draw (new_shape) ;

www.literateprogramming.com

Unigue to C++

Starting public, protected, private and friend Labels
In Column Zero of Class Declarations

Declaring the Members in a Consistent Order

Putting Simple Inline Function Definitions on the
Same Line as Their Definitions

— Using a Pure-Block Style with Four-Space Indentation for
Complex Inline Functions

Avoiding Putting Complex Function Implementations
Into .h Files

Class Declaration Format

class Type : public Parent {

private:
int x ;
int v_;

public:
Type () ;
Type (int x) : x (x) { }

~Type () ;

int get x() const { return x ; }
void set x(const int new x) { x = new x; }

void display () {

}

www.literateprogramming.com

Choosing Meaningful Names

* Variable Names

— Lower Case for All Variable Names with an Underscore as
a Separator in C/C++
* E.g., boiling_point
— Variable Names Using Mixed Case Letters Starting with a
Lower Case Letter And Starting Each Subsequent Word
with an Upper Case Letter in Java
« E.g., boilingPoint

www.literateprogramming.com

Choosing Meaningful Names Cont'd

e Variable Names Cont’d

— Careful Choice
 Consistent names
« Similar names for similar data types
» No names that are homophones
» Names that say what the variable represents; i.e., nouns
» No generic names such as tmp, buf, and reg
 No intentionally misspelled words such as lo or lite
* No abbreviations
* No overly long names

www.literateprogramming.com

Choosing Meaningful Names Cont'd

 Function Names

— Lower Case Letters for Public Function Names with an
Underscore as a Separator

— Consistent and Informative Names

« Strong verb that indicates the purpose for a function that returns no
value

» Name that indicates the meaning of the value returned for a
function that returns a value

 Method Names

— Method Names Using Mixed Case Letters Starting with a
Lower Case Letter And Starting Each Subsequent Word
with an Upper Case Letter

www.literateprogramming.com

Choosing Meaningful Names Cont'd

 Classes, Structures, and Type Definitions

— Capitalizing the First Letter of the Name of Each Type That
Is Defined

e Constants

— Using ALL _UPPER_CASE for Your Named Constants,
Separating Words with the Underscore Character

www.literateprogramming.com

Comments

. Describing Why Code Does What It Does

End-Line Comments
— Variable Declarations
— Marking #if/#endif Statements

Short (Single-Line) Comments

Block Comments
— Function Descriptions

Bold Comments
— Delimiting Major Sections of Code

www.literateprogramming.com

lllustrations : Comments

EAE o e o e o o e e e e

* Bold comment.
A L LI E SRS EEE L L EE S EEEEEEEEEEEERESESEEEEEEEREEEEEHESSEEXX.]

2
f*
* Block comment.

*x/

/* Short (single-line) comment. */

int i; /* end-line comment */

www.literateprogramming.com

Syntax and Language Issues

Each Line to Do Exact One Thing

No Use of Side-Effects

Clear Structure

Trivial Branch

while() { ... } Rather Thando { ... } while ();
Short Control Structure

No Deeply Nested Code

No Use of Global Variable

www.literateprogramming.com

Syntax and Language Issues Cont'd

No Preprocessor Constants (#defines)
— Declaring Vars of Proper Types as consts
— Defining enums for Related Sets of Integer Constants

Function Declarations/Prototypes for All
Functions

Explicit Assumptions about the Condition of
Input Data to Routines

Checking the Return Values of All Library
Function Calls

Informative Error Messages

www.literateprogramming.com

Formatting

« Formatting Refers to the Indentation, Alignment, And
Use of White Space to Lay Out Your Program to
Increase Its Readability by Others

« Consistency Is the Key to Producing Readable Code

— While Many Can Argue to Merits of 3 Versus 4 Spaces of
Indentation, Placement of Curly Braces, Etc.

Real Key Is to Adopt a Formatting Style
And Keep to It!

