
© C O P Y R I G H T S 2 0 2 3 E O M , H Y E O N S A N G A L L R I G H T S

R E S E R V E D

엄현상(Eom, Hyeonsang)

School of Computer Science and Engineering

Seoul National University

- Java Overview

- Java Examples

- C++ vs Java

- Q&A

© C O P Y R I G H T S 2 0 2 3 E O M , H Y E O N S A N G A L L R I G H T S

R E S E R V E D

Outline

Java Overview

• Object-Oriented Programming Language (OOPL) by Sun in

1991

– Programming with One or More Classes

– Simple Structure

• w/o header files, preprocessor, struct, operator overloading, multiple

Inheritance, pointers, etc.

– Garbage Collection

• No need to delete or return any storage

– Dynamic Loading

• Classes being loaded as needed

– Platform Independence

• Java Virtual Machine (JVM)

– Multithreading

• Support for multiple threads of execution
© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Some Differences with C/C++

• Automatic Memory Management

– Garbage Collector

– No Dangling Pointers or Memory Leaks

• No Pointer Handling

– No Explicit Reference/Dereference Operations

• No Makefiles

• No Header Files

– cf, imported Packages

• No Function Declaration (Similar to C)

• No Default Function Argument

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Java Platform

• S/W Platform for Running Java

– On top of any platforms

– Java Virtual Machine (JVM)

– Java Application Programming Interface (Java API)

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Underlying Platform

Java Program

Java Virtual Machine

Java API
Java Platform

Collection of ready-made

software components

- grouped into Packages

of classes and interfaces)

Java Interpreter

• Implementation of the JVM

– Executing Java Bytecodes

• Java bytecodes can be considered as intermediate code instructions

for the JVM

• Java programs, once compiled into bytecodes, can be run on any

JVM

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

How a Java Program Runs

• Compilation and Interpretation

– Compiler First Translates a Java Program into Java

Bytecodes

• Once

– Interpreter Parses and Runs Each Java Bytecode Instruction

• Multiple times on different platforms

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Java Compiler Java Interpreter Computer

Java Source Code Java Bytecode Machine Code

javac Java Virtual Machine (JVM)

Java Program

• Saved in Files, Each of Which Has the Same Name as

the public Class

– Containing Only One public Class

– Containing Other Non-public Classes

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

public class HelloWorld {

public static void main(String args[]) {

System.out.println(“Hello, World”);

}

}

$ javac HelloWorld.java

$ java HelloWorld

Hello, World

This code must be saved in HelloWorld.java

compile (create HelloWorld.class; bytecode)

start the JVM and run the main method

Memory Layout of a Java Program

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Class

• Unit of Programming

– Java Program: a Collection of Classes

• Source code in .java files

• Description (Blueprint) of Objects (Instances)

– Common Characteristics

• Instances Have These Characteristics

– Attributes (Data Fields) for Each Object

– Methods (Operations) That Work on the Objects

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Member Access Control

• Way to Control Access to a Class’ Members from

Other Classes

– private

• Accessible only in the class itself

– Default (package or friendly)

• Accessible in the same-package subclasses of the class or in the

classes of the same package

– protected

• Accessible in the subclasses of the class or in the classes of the

same package

– public

• Accessible everywhere
© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Object

• Instance of a Class

• Uniquely Identifiable Entity

– w/ Its State, Behavior, and Interface

– Maintaining Data Values in Its Attributes

– Referenced by a Reference Variable (of Reference Type)

• Inheriting from the Class Object

– w/ a number of methods

– toString(), equals(), … &, clone()

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

Managing Objects

• Referencing Objects of Specified Types

– Objects Created by the new Operator

• Creating Objects by Executing the Constructors

– Constructor (Function) Overloading

• Deleting Objects via Garbage Collection
– Reference Count for Each Object

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

String

value = “hello”

greeting

String greeting = new String(″hello″);

Cleanup occurs at the convenience of the Java runtime environment

Java Example: Abstraction

• Online Retailer Such as Amazon.Com

– Item: Type, Title, Maker, Price, Availability, etc.

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

class Item { // Class definition

public String title; // String is a predefined class

public double price; // double is a primitive data type

public double SalePrice(){ return (price * 0.9);}

}

Item A = new Item(); // Class object definition and creation

// OKAY : A.title, A.price, and A.SalePrice()

Attribute of the class

Method of the class

Variable of reference type

Java Example: Encapsulation

• Online Retailer Example Cont’d

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

class Item {

public String title;

public double price;

private int inStockQuantity;

public double SalePrice(){ return (price * 0.9);}

public boolean isAvailable(){

if(inStockQuantity > 0) return true;

else return false;

}

}

Item A = new Item(); // Class object definition and creation

// NOT OKAY: A.inStockQuantity

// OKAY: A.isAvailable()

inStockQuantity attribute is not

accessible outside of the Item class

Java Example: Inheritance

• Online Retailer Example Cont’d

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

class MusicCDItem extends Item {

public String singer_name;

}

// Class object definition and creation

MusicCDItem B = new MusicCDItem;

// OKAY: B.singer_name, B.title, B.price, B.SalePrice(),

// and B.isAvailable()

// NOT OKAY: B.inStockQuantity

MusicCDItem

Item

Java Example: Polymorphism

• Online Retailer Example Cont’d

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

class Item {

public String title;

public double price;

private int inStockQuantity;

public double SalePrice(){ return (price * 0.9);}

public boolean isAvailable(){

if(inStockQuantity > 0) return true;

else return false;

}

public void specificInfo() {

System.out.println("no info: a base-class object");

}

}

Java Example: Polymorphism
• Online Retailer Example Cont’d

class MusicCDItem extends Item {

public String singer_name;

public void specificInfo(){

System.out.println("signer name=" + singer_name +

" : a derived-class object");

}

}

public class OnlineRetailer {

static void printSpecificInfo(Item item){item.specificInfo();}

public static void main(String args[]){ … }

}

Item A = new Item();

MusicCDItem B = new MusicCDItem();

printSpecificInfo(A); // Call Item.specificInfo()

printSpecificInfo(B); // Call MusicCDItem.specificInfo()

// - Another derived class (e.g., MovieDVDItem) with specificInfo()

Static Modifier
• Use: Static Attributes & Static Methods

• Features

– All Classes Share Static Members

– It Is Possible to Invoke Static Methods w/o
Instantiation

– In Static Methods, It Is Allowed to Access Non-
Static Data or Non-Static Methods of Classes after
the Instantiation of the Objects

class A{

private int i = 5;

public static printI(){

System.out.println(i); // error!

System.out.println(new A().i);

}

}

Static Modifier Cont’d

• Differences between C++ and Java
– Static Method Invocation

• C++ : Class::method();

• Java : Class.method();

– Static Data Member Initialization
• C++ : No In-Class Initialization (ANSI/ISO)

• Java : In-Class Initialization

© 1992-2012 by Pearson Education, Inc.

All Rights Reserved.

class A{

public:

static int i; // declare

…

}

int A::i = 0; // define & initialize

class A{

public static int i = 10;

…

}

JAVA

C++

