A1 & (Eom, Hyeonsang)
School of Computer Science and Engineering
Seoul National University

©COPYRIGHTS 2021 EOM, HYEONSANG ALL RIGHTS
RESERVED

Outline

- Pointer Basic

- Pointer Arithmetic
- Function Pointers
- String Basic

- String Functions

- Q&A

©COPYRIGHTS 2021 EOM, HYEONSANG ALL RIGHTS
RESERVED

sizeof operator

* Returns size of operand in bytes (at compile-
time)

* For arrays, sizeof returns

— ('size of an element) * (number of elements)
int myArray|[10 |;
cout << sizeof(myArray);

sizeof operator Cont'd

* (Can be used with
— Variable names
— Type names
— Constant values

» Parentheses are only required if the operand 1s
a type name

Pointer Arithmetic

Increment/decrement pointer (++ or --)

Add/subtract an integer to/from a pointer (+ or
—|—:, - Or _:)

Pointers may be subtracted from each other

Pointer arithmetic i1s meaningless unless
performed on a pointer to an array

Pointer Arithmetic Cont'd

* 5-clement int array on a machine using 4-byte int
vPtr=&v|[0];
— VvPtr points to first element v[0], at location 3000
vPtr +=2;
— sets vPtr to 3008 (3000 + 2 * 4)

— VvPtr points to v[2 |
* Subtracting pointers

— Returns number of elements between two addresses
vPtr2 = &v[2 |; vPtr = &v|[0 |; vPtr2 - vPtr ?

Pointer Arithmetic Cont'd

* Pointer can be assigned to another pointer 1f
both are of same type

— If not, use cast operator
— Pointer to void (void *)

* Generic pointer, represents any type
* No casting needed to convert pointer to void *
* Casting 1s needed to convert void * to any other type

* void pointers cannot be dereferenced

Pointer Arithmetic Cont'd

* Pointer comparison
— Use equality and relational operators
— Compare addresses stored in pointers

* Comparisons are meaningless unless pointers point to
members of the same array

— When checking whether pointer 1s 0 (null pointer)
* Arrays and pointers are closely related

— Array name 1s like constant pointer

— Pointers can do array subscripting operations

Pointer Arithmetic Cont'd

int b[] = {

int *bPtr

for(int 1i
cout <<
cout <<

for(int f£f1
£fl1++)

cout <<
cout <<
cout <<

= 0;
llb[" << i << "]="’.

10, 20,
b;

30, 40 };

i< 4; i++)

b[1] << endl;
= 0; f1l < 4;
"k (b+" << f1;

")_\\ .
— ’

* (b+fl) << endl;

int b[] = {
int *bPtr =

for(int 1i
cout <<

= 0;
llb[ll << i << "]="’.

10, 20,
b;

30, 40 };

i< 4; i++)

cout << b[i] << endl;

for(int f£f1
£fl1++)

cout <<
cout <<
cout <<

= 0; f1l < 4;

"k (b+" << f1;
")=\\ ;

* (b+fl) << endl;

Arrays of Pointers

const char *a[4]| =

{ "Hearts", "Diamonds'', "Clubs'', "Spades" };

Each element of a points to a char * (string)

Array a has fixed size (4), but strings can be
of any size

Commonly used with command-line
arguments to function main

Pointers to Functions

Contain addresses of functions

— Function name is starting address of code that
defines function

Passed to functions

Returned from functions

Stored 1n arrays

Assigned to other function pointers

Calling Functions using Pointers

* Function header
bool (*foo) (int, int)

* Execute function from pointer with either
(*foo) (x,y)
— Dereference pointer to function, or
foo(x,y)
— Use the pointer directly

* Could be confusing

Function Pointers

void selectionSort(int [],
const int,
bool (*) (int, int));

void swap(int * const,
int * const);

bool ascending(int, int);
bool descending(int, int);

int main ()

{
const int aSize = 10;
int order;
int counter;

int a[aSize] =
{ 2, 6, 4, 8, 10,
12, 89, 68, 45, 37 };

cin >> order;

if (order == 1) {
selectionSort(a, aSize,

ascending) ;

}

else

{

selectionSort(a, aSize,

descending) ;

Function Pointers Cont'd

void selectionSort(int w[], const int size, bool
(*compare) (int, int))

{

int smallestOrLargest;

for (int i=0;
i<size - 1; i++)

sorl = 1i;

for (int idx =1 + 1;
idx < size;
idx++)
if(! (*compare)
(w[sorl], work[idx]))
sorl = idx;

swap (&work[sorl], &work[i]);

Function Pointers Cont'd

void swap(int * const elementlPtr, int * const element2Ptr)
{
int hold = *elementlPtr;

*elementlPtr = *element2Ptr;

*element2Ptr

hold;

bool ascending(int a, int b)

{

return a < b;

}

bool descending(int a, int b)

{

return a > b;

Arrays of Pointers to Functions

* Menu-driven systems

— Pointers to each function stored 1n array of
pointers to functions
* All functions must have same return type and same
parameter types
— Menu choice determines subscript into array of
function pointers

Character Constant and String

* Integer value represented as character in single quotes

'Zz' 1s integer value of z
. 122 in ASCII

— “\n' 1s integer value of newline
. 10 in ASCII
* String
— Series of characters treated as single unit

— String literal (string constants)
¢ “Ilike C++”
e Static storage class

— Array of characters, ends with null character "\0'

— String 1s constant pointer to string’s first character

String Assignment

* Character array
char color|] = "blue"’;
char color[] = {'b','I', 'u', 'e', "\0' };
— Creates 5 element char array color
— Last element 1s \0'
* Variable of type char *
char *colorPtr = "blue";
— Creates pointer colorPtr to letter b in string "blue"
— "blue" resides somewhere 1n memory

Reading Strings

* Assign input to character array word| 20 |
cin >> word;
— Reads characters until whitespace or EOF
— Reads only up to 19 characters (space reserved for
"0")
* String could exceed array size

cin >> setw(20) >> word;

cin.getline

* Read line of text
cin.getline(array, size, delimiter);

— Copies input into specified array until either
* One less than size 1s reached

* Delimiter character 1s mput

char sentence| 80 |;
cin.getline(sentence, 80, \n');

<cstring> Library

Manipulate string data

Compare strings

Search strings for characters and other strings
Tokenize strings (separate strings into logical pieces)

Data type size t
— An unsigned integral type

Such as unsigned int or unsigned long

— Defined 1n header file <cstring>

String Functions

char *strcpy(char *s1, const char *s2)
— Copies second argument into first argument
. First argument must be large enough to store string and terminating null character
char *strncpy(char *s1, const char *s2, size tn)
— Specifies number of characters to be copied from second argument into first argument
. Does not necessarily copy terminating null character
char *strcat(char *s1, const char *s2)
— Appends second argument to first argument

. First character of second argument replaces null character terminating first argument

. You must ensure first argument large enough to store concatenated result and null character

char *strncat(char *s1, const char *s2, size tn)
— Appends specified number of characters from second argument to first argument

. Appends terminating null character to result
size t strlen(const char *s)

— Returns number of characters in string

String Functions Cont'd

int strcmp(const char *s1, const char *s2)

— Compares character by character

— Returns
. Zero if strings are equal
. Negative value if first string is less than second string
. Positive value if first string is greater than second string

int strncmp(const char *s1, const char *s2, size tn)
— Compares up to specified number of characters
. Stops if it reaches null character in one of arguments
Character codes / character sets
— Machine dependent
— ASCII

. “American Standard Code for Information Interchage”

— EBCDIC
. “Extended Binary Coded Decimal Interchange Code”

— Unicode

Tokenizing

* Breaking strings into tokens
— Tokens: logical units, such as words (separated by spaces)
— Separated by delimiting characters
"This is my string*
. 4 word tokens (separated by spaces)

* char *strtok(char *s1, const char *s2)

— Multiple calls required
. First call contains two arguments, string to be tokenized and string containing
delimiting characters
— Finds next delimiting character and replaces with null character
. Subsequent calls continue tokenizing

- Call with first argument NULL
- Stores pointer to remaining string in a static variable

— Returns pointer to current token

String Example

#include <cstring> // prototype for strtok
using std::strtok;

int main ()

{

char sentence[] = "This is a sentence with 7 tokens";
char *tokenPtr;
tokenPtr = strtok(sentence, " ");

while (tokenPtr != NULL)

{
cout << tokenPtr << '\n';

tokenPtr = strtok(NULL, " ");
}
cout << "\nAfter strtok, sentence = " << sentence
<< endl;

return O;

