
© C O P Y R I G H T S 2 0 1 9 E O M , H Y E O N S A N G A L L R I G H T S

R E S E R V E D

엄현상(Eom, Hyeonsang)

School of Computer Science and Engineering

Seoul National University

- Pointer Basic

- Pointer Arithmetic

- Function Pointers

- String Basic

- String Functions

- Q&A

© C O P Y R I G H T S 2 0 1 9 E O M , H Y E O N S A N G A L L R I G H T S

R E S E R V E D

Outline

sizeof operator

• Returns size of operand in bytes (at compile-

time)

• For arrays, sizeof returns

– (size of an element) * (number of elements)

int myArray[10];

cout << sizeof(myArray);

sizeof operator Cont’d

• Can be used with

– Variable names

– Type names

– Constant values

• Parentheses are only required if the operand is

a type name

Pointer Arithmetic

• Increment/decrement pointer (++ or --)

• Add/subtract an integer to/from a pointer (+ or

+=, - or -=)

• Pointers may be subtracted from each other

• Pointer arithmetic is meaningless unless

performed on a pointer to an array

Pointer Arithmetic Cont’d

• 5-element int array on a machine using 4-byte int
vPtr = &v[0];

– vPtr points to first element v[0], at location 3000

vPtr += 2;

– sets vPtr to 3008 (3000 + 2 * 4)

– vPtr points to v[2]

• Subtracting pointers

– Returns number of elements between two addresses

vPtr2 = &v[2]; vPtr = &v[0]; vPtr2 - vPtr ?

Pointer Arithmetic Cont’d

• Pointer can be assigned to another pointer if

both are of same type

– If not, use cast operator

– Pointer to void (void *)

• Generic pointer, represents any type

• No casting needed to convert pointer to void *

• Casting is needed to convert void * to any other type

• void pointers cannot be dereferenced

Pointer Arithmetic Cont’d

• Pointer comparison

– Use equality and relational operators

– Compare addresses stored in pointers

• Comparisons are meaningless unless pointers point to

members of the same array

– When checking whether pointer is 0 (null pointer)

• Arrays and pointers are closely related

– Array name is like constant pointer

– Pointers can do array subscripting operations

Pointer Arithmetic Cont’d

int b[] = { 10, 20, 30, 40 };

int *bPtr = b;

…

for(int i = 0; i < 4; i++)

cout << "b[" << i << "]=";

cout << b[i] << endl;

for(int f1 = 0; f1 < 4;

f1++)

cout << "*(b+" << f1;

cout << ")=“;

cout << *(b+f1) << endl;

int b[] = { 10, 20, 30, 40 };

int *bPtr = b;

…

for(int i = 0; i < 4; i++)

cout << "b[" << i << "]=";

cout << b[i] << endl;

for(int f1 = 0; f1 < 4;

f1++)

cout << "*(b+" << f1;

cout << ")=“;

cout << *(b+f1) << endl;

Arrays of Pointers

const char *a[4] =

{ "Hearts", "Diamonds", "Clubs", "Spades" };

• Each element of a points to a char * (string)

• Array a has fixed size (4), but strings can be

of any size

• Commonly used with command-line

arguments to function main

Pointers to Functions

• Contain addresses of functions

– Function name is starting address of code that

defines function

• Passed to functions

• Returned from functions

• Stored in arrays

• Assigned to other function pointers

Calling Functions using Pointers

• Function header
bool (*foo) (int, int)

• Execute function from pointer with either
(*foo) (x, y)

– Dereference pointer to function, or

foo(x, y)

– Use the pointer directly

• Could be confusing

Function Pointers

void selectionSort(int [],

const int,

bool (*)(int, int));

void swap(int * const,

int * const);

bool ascending(int, int);

bool descending(int, int);

int main()

{

const int aSize = 10;

int order;

int counter;

int a[aSize] =

{ 2, 6, 4, 8, 10,

12, 89, 68, 45, 37 };

…

cin >> order;

if (order == 1) {

selectionSort(a, aSize,

ascending);

}

else

{

selectionSort(a, aSize,

descending);

}

…

}

Function Pointers Cont’d
void selectionSort(int w[], const int size, bool

(*compare)(int, int))

{

int smallestOrLargest;

for (int i=0;

i<size - 1; i++)

{

sorl = i;

for (int idx = i + 1;

idx < size;

idx++)

if(!(*compare)

(w[sorl], work[idx]))

sorl = idx;

swap(&work[sorl], &work[i]);

}

}

Function Pointers Cont’d
void swap(int * const element1Ptr, int * const element2Ptr)

{

int hold = *element1Ptr;

*element1Ptr = *element2Ptr;

*element2Ptr = hold;

}

bool ascending(int a, int b)

{

return a < b;

}

bool descending(int a, int b)

{

return a > b;

}

Arrays of Pointers to Functions

• Menu-driven systems

– Pointers to each function stored in array of

pointers to functions

• All functions must have same return type and same

parameter types

– Menu choice determines subscript into array of

function pointers

Character Constant and String

• Integer value represented as character in single quotes

– 'z' is integer value of z

• 122 in ASCII

– ‘\n' is integer value of newline

• 10 in ASCII

• String

– Series of characters treated as single unit

– String literal (string constants)

• “I like C++”

• Static storage class

– Array of characters, ends with null character '\0'

– String is constant pointer to string’s first character

String Assignment

• Character array
char color[] = "blue";

char color[] = { 'b', 'l', 'u', 'e', '\0' };

– Creates 5 element char array color

– Last element is '\0'

• Variable of type char *

char *colorPtr = "blue";

– Creates pointer colorPtr to letter b in string "blue"

– "blue" resides somewhere in memory

Reading Strings

• Assign input to character array word[20]

cin >> word;

– Reads characters until whitespace or EOF

– Reads only up to 19 characters (space reserved for

'\0')

• String could exceed array size
cin >> setw(20) >> word;

cin.getline

• Read line of text
cin.getline(array, size, delimiter);

– Copies input into specified array until either

• One less than size is reached

• Delimiter character is input

char sentence[80];

cin.getline(sentence, 80, '\n');

<cstring> Library

• Manipulate string data

• Compare strings

• Search strings for characters and other strings

• Tokenize strings (separate strings into logical pieces)

• Data type size_t

– An unsigned integral type

• Such as unsigned int or unsigned long

– Defined in header file <cstring>

String Functions

• char *strcpy(char *s1, const char *s2)

– Copies second argument into first argument

• First argument must be large enough to store string and terminating null character

• char *strncpy(char *s1, const char *s2, size_t n)

– Specifies number of characters to be copied from second argument into first argument

• Does not necessarily copy terminating null character

• char *strcat(char *s1, const char *s2)

– Appends second argument to first argument

• First character of second argument replaces null character terminating first argument

• You must ensure first argument large enough to store concatenated result and null character

• char *strncat(char *s1, const char *s2, size_t n)

– Appends specified number of characters from second argument to first argument

• Appends terminating null character to result

• size_t strlen(const char *s)

– Returns number of characters in string

String Functions Cont’d

• int strcmp(const char *s1, const char *s2)

– Compares character by character

– Returns

• Zero if strings are equal

• Negative value if first string is less than second string

• Positive value if first string is greater than second string

• int strncmp(const char *s1, const char *s2, size_t n)

– Compares up to specified number of characters

• Stops if it reaches null character in one of arguments

• Character codes / character sets

– Machine dependent

– ASCII

• “American Standard Code for Information Interchage”

– EBCDIC

• “Extended Binary Coded Decimal Interchange Code”

– Unicode

Tokenizing

• Breaking strings into tokens

– Tokens: logical units, such as words (separated by spaces)

– Separated by delimiting characters

– "This is my string“

• 4 word tokens (separated by spaces)

• char *strtok(char *s1, const char *s2)

– Multiple calls required

• First call contains two arguments, string to be tokenized and string containing

delimiting characters

– Finds next delimiting character and replaces with null character

• Subsequent calls continue tokenizing

– Call with first argument NULL

– Stores pointer to remaining string in a static variable

– Returns pointer to current token

String Example
…

#include <cstring> // prototype for strtok

using std::strtok;

int main()

{

char sentence[] = "This is a sentence with 7 tokens";

char *tokenPtr;

tokenPtr = strtok(sentence, " ");

while (tokenPtr != NULL)

{

cout << tokenPtr << '\n';

tokenPtr = strtok(NULL, " ");

}

cout << "\nAfter strtok, sentence = " << sentence

<< endl;

return 0;

}

