
© C O P Y R I G H T S  2 0 1 5  E O M ,  H Y E O N S A N G  A L L  R I G H T S  
R E S E R V E D  

엄현상(Eom, Hyeonsang)
School of Computer Science and Engineering

Seoul National University 



- C++ Basics
- Imperative Language (vs. Declarative Lang.)
- Object-Oriented Design
- Six Phases of C++ Programs
- Examples

- Data Types

© C O P Y R I G H T S  2 0 1 5  E O M ,  H Y E O N S A N G  A L L  R I G H T S  
R E S E R V E D  

Outline



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

Imperative Language 
• Language for Computation in Terms of Statements 

That Change a Program State 
– Expressing Commands to Take Action
– Defining Sequences of Commands for the Computer to 

Perform 
• Procedural Programming Language

– Structured Programming Language
– Modular Programming Language

• Object-Oriented Programming Languages as extended ones 

www.wikipedia.org

Declarative Language for Expressing What the Program Should Accomplish
as Opposed to Imperative Language for Expressing How 



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

Objects
• Reusable Software Components That Model 

Real-World Items
: e.g., Babies, Cars, etc.
– Have Attributes

• Size, shape, color, weight, etc.
– Exhibit Behaviors

• Babies cry, crawl, sleep, etc.; cars accelerate, brake, 
turn, etc.



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

Object-Oriented Design (OOD)
• Modeling Real-World Objects in Software
• Modeling Communication among Objects
• Encapsulating Attributes and Operations 

(Behaviors)
– Information Hiding
– Communication through Well-Defined Interfaces



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

Object-Oriented Analysis and 
Design (OOAD)

• Analyzing Program Requirements, Then 
Developing Solution
– Essential for Large Programs
– Planning in Pseudocode or UML

• UML (Unified Modeling Lang.: currently, ver. 2)
– Graphical representation scheme used to approach OOAD

» Enabling developers to model object-oriented systems
– Flexible and extendible
– Object Management Group (OMG) supervised



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

Object-Oriented Language

• Programming in Object-Oriented Languages 
Is Called Object-Oriented Programming 
(OOP)

• Allowing Programmers to Create User-
Defined Types Called Classes
– Containing Data Members (Attributes) and 

Member Functions (Behaviors)



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

C++

• Object-Oriented Programming Language
– C++ Programs Built from Pieces Called Classes 

and Functions
• User-defined ones
• C++ Standard Library

– Rich collections of existing classes and functions
» Reusable in new applications

• Various popular third-party libraries
Reusable Software 
Possibly More Efficient 



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

Six Phases of C++ Programs

• Edit
– Writing Program (and Storing Source Code on Disk)

• Preprocess
– Performing Certain Manipulations Before 

Compilation
• Compile

– Translating C++ Programs into Machine Languages



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

Six Phases of C++ Programs Cont’d

• Link
– Linking Object Code with Missing Functions 

and Data
• Load

– Transferring Executable Image to Memory
• Execute

– Executing the Program One Instruction at a Time



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

Six Phases of C++ Programs Cont’d



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

Examples of C++ Programs

• Five Examples Demonstrate:
– How to Display Messages on the Screen
– How to Obtain Information from the User
– How to Perform Arithmetic Calculations
– How to Make Decisions by Comparing Numbers

• Equality and Relational Operators



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

Printing a Line of Text

• Simple Program
– Printing a Line of Text
– Illustrating Several Important Features of C++



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

Printing a Line of Text Cont’d
• Comments

– Explaining Programs to Programmers
– Improving Program Readability
– Ignored by Compiler
– Single-Line Comment

• Beginning with //
• Example

– // This is a text-printing program.

– Multi-Line Comment
• Starting with /*
• Ending with */



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

 1 // Fig. 2.1: fig02_01.cpp 

 2 // Text-printing program. 

 3 #include <iostream> // allows program to output data to the screen 

 4  
 5 // function main begins program execution 

 6 int main() 

 7 { 

 8    std::cout << "Welcome to C++!\n"; // display message 

 9  
10    return 0; // indicate that program ended successfully 
11  

12 } // end function main 

 
Welcome to C++! 
 

 

Single-line comments

Preprocessor directive to 
include input/output stream 
header file <iostream>Function main appears 

exactly once in every C++ 
program

Function main returns an 
integer valueLeft brace { begins function 

body

Corresponding right brace }
ends function body

Statements end with a 
semicolon ;

Name cout belongs to 
namespace std

Stream insertion operator

Keyword return is one of 
several means to exit a 
function; value 0 indicates 
that the program terminated 
successfully

Printing a Line of Text Cont’d


		
1
// Fig. 2.1: fig02_01.cpp



		
2
// Text-printing program.



		
3
#include <iostream> // allows program to output data to the screen



		
4




		
5
// function main begins program execution



		
6
int main()



		
7
{



		
8
   std::cout << "Welcome to C++!\n"; // display message



		
9




		
10
   return 0; // indicate that program ended successfully



		
11




		
12
} // end function main



		Welcome to C++!










©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

Good Programming Practice 1

Every program should begin with a comment 
that describes the purpose of the program, author, 
date and time. 



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

• Preprocessor Directives Beginning w/ #
– Processed by preprocessor before compiling
– Example

• #include <iostream>
– Tells preprocessor to include the input/output stream header 

file <iostream>

• White Space
– Blank lines, space characters and tabs
– Used to make programs easier to read
– Ignored by the compiler

Printing a Line of Text Cont’d



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

Common Programming Error 1

Forgetting to include the <iostream> header file 
in a program that inputs data from the keyboard 
or outputs data to the screen causes the compiler 
to issue an error message, because the compiler 
cannot recognize references to the stream 
components (e.g., cout). 



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

Use blank lines and space characters to enhance 
program readability.

Good Programming Practice 2



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

• Function main
– A part of every C++ program

• Exactly one function in a program must be main
– Can return a value
– Example

• int main()
– This main function returns an integer (whole number)

– Body is delimited by braces ({})

Printing a Line of Text Cont’d



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

• Statements
– Instruct the program to perform an action
– All statements end with a semicolon (;)

Printing a Line of Text Cont’d



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

• Namespace
– std::

• Specifies using a name that belongs to “namespace” 
std

• Can be removed through the use of using statements

• Standard output stream object
– std::cout

• “Connected” to screen
• Defined in input/output stream header file <iostream>

Printing a Line of Text Cont’d



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

• Stream insertion operator <<
– Value to right (right operand) inserted into left 

operand
– Example

• std::cout << "Hello";
– Inserts the string "Hello" into the standard output

» Displays to the screen

Printing a Line of Text Cont’d



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

• Escape characters
– A character preceded by "\"

• Indicates “special” character output
– Example

• "\n"
– Cursor moves to beginning of next line on the screen

Printing a Line of Text Cont’d



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

Omitting the semicolon at the end of a C++ 
statement is a syntax error. (Again, preprocessor 
directives do not end in a semicolon.) The 
syntax of a programming language specifies the 
rules for creating a proper program in that 
language. A syntax error occurs when the 
compiler encounters code that violates C++’s 
language rules (i.e., its syntax). 

Common Programming Error 2



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

Syntax errors are also called compiler errors, 
compile-time errors or compilation errors, 
because the compiler detects them during the 
compilation phase. You will be unable to 
execute your program until you correct all the 
syntax errors in it. As you’ll see, some 
compilation errors are not syntax errors.

Common Programming Error 2



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

• return statement
– One of several means to exit a function
– When used at the end of main

• The value 0 indicates the program terminated 
successfully

• Example
– return 0;

Printing a Line of Text Cont’d



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

Many programmers make the last character 
printed by a function a newline (＼n). This 
ensures that the function will leave the screen 
cursor positioned at the beginning of a new 
line. Conventions of this nature encourage 
software reusability—a key goal in software 
development. 

Good Programming Practice 3



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

Escape 
sequence 

Description 

\n Newline. Position the screen cursor to the beginning of the next line. 
\t Horizontal tab. Move the screen cursor to the next tab stop. 

\r 
Carriage return. Position the screen cursor to the beginning of the current 
line; do not advance to the next line. 

\a Alert. Sound the system bell. 
\\ Backslash. Used to print a backslash character. 
\' Single quote. Use to print a single quote character. 
\" Double quote. Used to print a double quote character. 
 

Escape sequences


		Escape sequence

		Description



		\n

		Newline. Position the screen cursor to the beginning of the next line.



		\t

		Horizontal tab. Move the screen cursor to the next tab stop.



		\r

		Carriage return. Position the screen cursor to the beginning of the current line; do not advance to the next line.



		\a

		Alert. Sound the system bell.



		\\

		Backslash. Used to print a backslash character.



		\'

		Single quote. Use to print a single quote character.



		\"

		Double quote. Used to print a double quote character.







©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

Indent the entire body of each function one 
level within the braces that delimit the body of 
the function. This makes a program’s functional 
structure stand out and helps make the program 
easier to read. 

Good Programming Practice 4



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

Set a convention for the size of indent you 
prefer, then apply it uniformly. The tab key may 
be used to create indents, but tab stops may 
vary. We recommend using either 1/4-inch tab 
stops or (preferably) three spaces to form a 
level of indent.

Good Programming Practice 5



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

Modifying the 1st C++ Program
• Two examples

– Print text on one line using multiple statements
• Each stream insertion resumes printing where the 

previous one stopped
– Print text on several lines using a single statement

• Each newline escape sequence positions the cursor to 
the beginning of the next line

• Two newline characters back-to-back output a blank 
line



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

 1 // Fig. 2.3: fig02_03.cpp 

 2 // Printing a line of text with multiple statements. 

 3 #include <iostream> // allows program to output data to the screen 

 4  
 5 // function main begins program execution 

 6 int main() 

 7 { 

 8    std::cout << "Welcome ";  

 9    std::cout << "to C++!\n"; 

10  
11    return 0; // indicate that program ended successfully 
12  

13 } // end function main 

 
Welcome to C++! 
 

 

Multiple stream insertion 
statements produce one line 
of output because line 8 ends 
without a newline

Printing a Line of Text Cont’d


		
1
// Fig. 2.3: fig02_03.cpp



		
2
// Printing a line of text with multiple statements.



		
3
#include <iostream> // allows program to output data to the screen



		
4




		
5
// function main begins program execution



		
6
int main()



		
7
{



		
8
   std::cout << "Welcome "; 



		
9
   std::cout << "to C++!\n";



		
10




		
11
   return 0; // indicate that program ended successfully



		
12




		
13
} // end function main



		Welcome to C++!










©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

 1 // Fig. 2.4: fig02_04.cpp 

 2 // Printing multiple lines of text with a single statement. 

 3 #include <iostream> // allows program to output data to the screen 

 4  
 5 // function main begins program execution 

 6 int main() 

 7 { 

 8    std::cout << "Welcome\nto\n\nC++!\n"; 

 9  
10    return 0; // indicate that program ended successfully 
11  

12 } // end function main 

 
Welcome 
to 
 
C++! 
 

 

Use newline characters to 
print on multiple lines

Printing Lines of Text


		
1
// Fig. 2.4: fig02_04.cpp



		
2
// Printing multiple lines of text with a single statement.



		
3
#include <iostream> // allows program to output data to the screen



		
4




		
5
// function main begins program execution



		
6
int main()



		
7
{



		
8
   std::cout << "Welcome\nto\n\nC++!\n";



		
9




		
10
   return 0; // indicate that program ended successfully



		
11




		
12
} // end function main



		Welcome


to


C++!










©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

• Variable
– Is a location in memory where a value can be 

stored
– Common data types (fundamental, primitive or 

built-in)
• int – for integer numbers
• char – for characters
• double – for floating point numbers

– Declare variables with data type and name before 
use

Adding Integers



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

 1 // Fig. 2.5: fig02_05.cpp 

 2 // Addition program that displays the sum of two numbers. 

 3 #include <iostream> // allows program to perform input and output 

 4  
 5 // function main begins program execution 

 6 int main() 

 7 { 

 8    // variable declarations 

 9    int number1; // first integer to add   

10    int number2; // second integer to add  
11    int sum; // sum of number1 and number2 
12  
13    std::cout << "Enter first integer: "; // prompt user for data 
14    std::cin >> number1; // read first integer from user into number1 
15  
16    std::cout << "Enter second integer: "; // prompt user for data 
17    std::cin >> number2; // read second integer from user into number2 
18  
19    sum = number1 + number2; // add the numbers; store result in sum 
20  
21    std::cout << "Sum is " << sum << std::endl; // display sum; end line 
22  
23    return 0; // indicate that program ended successfully 
24  
25 } // end function main 
 
Enter first integer: 45 
Enter second integer: 72 
Sum is 117 
 

 

Declare integer variables

Use stream extraction 
operator with standard input 
stream to obtain user input

Stream manipulator 
std::endl outputs a 
newline, then “flushes” output 
buffer

Concatenating, chaining or 
cascading stream insertion 
operations


		
1
// Fig. 2.5: fig02_05.cpp



		
2
// Addition program that displays the sum of two numbers.



		
3
#include <iostream> // allows program to perform input and output



		
4




		
5
// function main begins program execution



		
6
int main()



		
7
{



		
8
   // variable declarations



		
9
   int number1; // first integer to add  



		
10
   int number2; // second integer to add 



		
11
   int sum; // sum of number1 and number2



		
12




		
13
   std::cout << "Enter first integer: "; // prompt user for data



		
14
   std::cin >> number1; // read first integer from user into number1



		
15




		
16
   std::cout << "Enter second integer: "; // prompt user for data



		
17
   std::cin >> number2; // read second integer from user into number2



		
18




		
19
   sum = number1 + number2; // add the numbers; store result in sum



		
20




		
21
   std::cout << "Sum is " << sum << std::endl; // display sum; end line



		
22




		
23
   return 0; // indicate that program ended successfully



		
24




		
25
} // end function main



		Enter first integer: 45


Enter second integer: 72


Sum is 117










©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

• Variables (Cont’d)
– You can declare several variables of same type in 

one declaration
• Comma-separated list
• int integer1, integer2, sum;

– Variable name
• Must be a valid identifier

– Series of characters (letters, digits, underscores)
– Cannot begin with digit
– Case sensitive (uppercase letters are different from lowercase 

letters)

Adding Integers Cont’d



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

Good Programming Practice 6 

Place a space after each comma (,) to make 
programs more readable. 



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

Some programmers prefer to declare each 
variable on a separate line. This format allows 
you to place a descriptive comment next to 
each declaration.  

Good Programming Practice 7 



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

Portability Tip 1 

C++ allows identifiers of any length, but your C++ 
implementation may impose some restrictions on 
the length of identifiers. Use identifiers of 31 
characters or fewer to ensure portability. 



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

Choosing meaningful identifiers helps make a 
program self-documenting—a person can 
understand the program simply by reading it 
rather than having to refer to manuals or 
comments. 

Good Programming Practice 8 



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

Avoid using abbreviations in identifiers. This 
promotes program readability. 

Good Programming Practice 9 



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

Avoid identifiers that begin with underscores 
and double underscores, because C++ compilers 
may use names like that for their own purposes 
internally. This will prevent names you choose 
from being confused with names the compilers 
choose. 

Good Programming Practice 10 



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

Error-Prevention Tip 1 
Languages like C++ are “moving targets.” As 
they evolve, more keywords could be added to 
the language. Avoid using “loaded” words like 
“object” as identifiers. Even though “object” is 
not currently a keyword in C++, it could 
become one; therefore, future compiling with 
new compilers could break existing code. 



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

Good Programming Practice 11 

Always place a blank line between a declaration 
and adjacent executable statements. This makes 
the declarations stand out in the program and 
contributes to program clarity. 



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

Good Programming Practice 12 

If you prefer to place declarations at the 
beginning of a function, separate them from the 
executable statements in that function with one 
blank line to highlight where the declarations 
end and the executable statements begin. 



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

• Input stream object
– std::cin from <iostream>

• Usually connected to keyboard
• Stream extraction operator >>

– Waits for user to input value, press Enter (Return) key
– Stores a value in the variable to the right of the operator

» Converts the value to the variable’s data type

• Example
– std::cin >> number1;

» Reads an integer typed at the keyboard
» Stores the integer in variable number1

Adding Integers Cont’d



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

Error-Prevention Tip 2 

Programs should validate the correctness of all 
input values to prevent erroneous information 
from affecting a program’s calculations. 



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

• Assignment operator =
– Assigns the value on the right to the variable on 

the left
– Binary operator (two operands)
– Example:

• sum = variable1 + variable2;
– Adds the values of variable1 and variable2
– Stores the result in the variable sum

Adding Integers Cont’d



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

• Stream manipulator std::endl
– Outputs a newline
– Flushes the output buffer

Adding Integers Cont’d



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

Good Programming Practice13 

Place spaces on either side of a binary operator. 
This makes the operator stand out and makes the 
program more readable. 



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

• Concatenating stream insertion operations
– Use multiple stream insertion operators in a 

single statement
• Stream insertion operation knows how to output each 

type of data
– Also called chaining or cascading

Adding Integers Cont’d



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

• Concatenating stream insertion operations 
(Cont’d)
– Example

• std::cout << "Sum is " << number1 + number2 
<< std::endl;

– Outputs "Sum is “
–Then outputs the sum of variables number1 

and number2
–Then outputs a newline and flushes the 

output buffer

Adding Integers Cont’d



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

Memory Concepts

• Variable names
– Correspond to actual locations in the computer's 

memory
• Every variable has a name, a type, a size and a value

– When a new value placed into a variable, the new 
value overwrites the old value

• Writing to memory is “destructive”



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

Memory Concepts (Cont’d)

• Variable names (Cont’d)
– Reading variables from memory is 

nondestructive
– Example

• sum = number1 + number2;
– Although the value of sum is overwritten
– The values of number1 and number2 remain intact



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

Memory location showing the name and value of 
variable number1.

Memory Concepts (Cont’d)



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

Memory locations after storing values for 
number1 and number2.

Memory Concepts (Cont’d)

C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Education, 2008



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

Memory locations after calculating and storing 
the sum of number1 and number2.

Memory Concepts (Cont’d)



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

Arithmetic
• Arithmetic operators

– * 
• Multiplication 

– / 
• Division
• Integer division truncates (discards) the remainder

– 7 / 5 evaluates to 1

– %
• The modulus operator returns the remainder 

– 7 % 5 evaluates to 2 



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

Common Programming Error 3 

Attempting to use the modulus operator (%) 
with noninteger operands is a compilation error. 



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

Arithmetic (Cont’d)

• Straight-line form
– Required for arithmetic expressions in C++
– All constants, variables and operators appear in a 

straight line



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

Arithmetic (Cont’d)

• Grouping subexpressions
– Parentheses are used in C++ expressions to group 

subexpressions
• In the same manner as in algebraic expressions

– Example
• a * ( b + c )

– Multiply a times the quantity b + c



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

C++ operation C++ arithmetic 
operator 

Algebraic 
expression 

C++ 
expression 

Addition + f + 7 f + 7 

Subtraction - p – c p - c 

Multiplication * bm or b ·  m b * m  

Division / x / y or x
y

 or x ÷ y x / y 

Modulus % r mod s r % s 

 

Arithmetic Operators


		C++ operation

		C++ arithmetic operator

		Algebraic expression

		C++ expression



		Addition

		+

		f + 7

		f + 7



		Subtraction

		-

		p – c

		p - c



		Multiplication

		*

		bm or b· m

		b * m 



		Division

		/

		x / y or 

[image: image1.wmf]x


y


 or x ÷ y

		x / y



		Modulus

		%

		r mod s

		r % s





_1165254435.unknown





©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

• Rules of operator precedence
– Operators in parentheses are evaluated first

• For nested (embedded) parentheses
– Operators in innermost pair are evaluated first

– Multiplication, division and modulus are applied 
next

• Operators are applied from left to right
– Addition and subtraction are applied last

• Operators are applied from left to right

Arithmetic (Cont’d)



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

Operator(s) Operation(s) Order of evaluation (precedence) 

( ) Parentheses Evaluated first. If the parentheses are nested, the 
expression in the innermost pair is evaluated first. 
If there are several pairs of parentheses “on the 
same level” (i.e., not nested), they are evaluated left 
to right. 

* 

/ 

% 

Multiplication 

Division  

Modulus 

Evaluated second. If there are several, they are 
evaluated left to right.  

+ 
- 

Addition 
Subtraction 

Evaluated last. If there are several, they are 
evaluated left to right. 

 

Precedence of Arithmetic Operators


		Operator(s)

		Operation(s)

		Order of evaluation (precedence)



		( )

		Parentheses

		Evaluated first. If the parentheses are nested, the expression in the innermost pair is evaluated first. If there are several pairs of parentheses “on the same level” (i.e., not nested), they are evaluated left to right.



		*
/
%

		Multiplication


Division 


Modulus

		Evaluated second. If there are several, they are evaluated left to right. 



		+
-

		Addition


Subtraction

		Evaluated last. If there are several, they are evaluated left to right.







©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

Common Programming Error 4 

Some programming languages use operators ** 
or ^ to represent exponentiation. C++ does not 
support these exponentiation operators; using 
them for exponentiation results in errors. 



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

Good Programming Practice 14 

Using redundant parentheses in complex 
arithmetic expressions can make the 
expressions clearer. 



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

Order in Which a Second-Degree 
Polynomial Is Evaluated 



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

• Condition
– Expression can be either true or false
– Can be formed using equality or relational 

operators
• if statement

– If the condition is true, the body of the if 
statement executes

– If the condition is false, the body of the if 
statement does not execute

Decision Making 



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

Standard algebraic 
equality or relational 
operator 

C++ equality 
or relational 
operator 

Sample  
C++  
condition 

Meaning of  
C++ condition 

Relational operators    
 > > x > y x is greater than y 
 < < x < y x is less than y 

 ≥ >= x >= y x is greater than or equal to y 

 ≤  <= x <= y x is less than or equal to y 
 Equality operators    
 = == x == y x is equal to y 
 ≠  != x != y x is not equal to y 
 

Equality and relational operators


		Standard algebraic
equality or relational
operator

		C++ equality
or relational
operator

		Sample 
C++ 
condition

		Meaning of 
C++ condition



		Relational operators

		

		

		



		

		>

		x > y

		x is greater than y



		

		<

		x < y

		x is less than y



		(

		>=

		x >= y

		x is greater than or equal to y



		 (

		<=

		x <= y

		x is less than or equal to y



		 Equality operators

		

		

		



		=

		==

		x == y

		x is equal to y



		 ≠

		!=

		x != y

		x is not equal to y







©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

Common Programming Error 5 

A syntax error will occur if any of the operators 
=, !=, >= and <=appears with spaces between 
its pair of symbols. 



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

Common Programming Error 6 
Reversing the order of the pair of symbols in any 
of the operators !=, >= and <= (by writing them 
as =!, => and =<, respectively) is normally a 
syntax error. In some cases, writing != as =! will 
not be a syntax error, but almost certainly will be 
a logic error that has an effect at execution time. 
(cont’d…)



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

Common Programming Error 6 

You will understand why when you learn about 
logical operators. A fatal logic error causes a 
program to fail and terminate prematurely. A 
nonfatal logic error allows a program to 
continue executing, but usually produces 
incorrect results.  



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

74

Common Programming Error 7 
Confusing the equality operator ==with the 
assignment operator = results in logic errors. 
The equality operator should be read “is equal 
to,” and the assignment operator should be read 
“gets” or “gets the value of” or “is assigned the 
value of.” Some people prefer to read the 
equality operator as “double equals.” Confusing 
these operators may not necessarily cause an 
easy-to-recognize syntax error, but may cause 
extremely subtle logic errors. 



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

 1 // Fig. 2.13: fig02_13.cpp 

 2 // Comparing integers using if statements, relational operators 

 3 // and equality operators. 

 4 #include <iostream> // allows program to perform input and output 

 5  
 6 using std::cout; // program uses cout 

 7 using std::cin;  // program uses cin  

 8 using std::endl; // program uses endl 

 9  
10 // function main begins program execution 
11 int main() 
12 { 
13    int number1; // first integer to compare 
14    int number2; // second integer to compare 
15  
16    cout << "Enter two integers to compare: "; // prompt user for data 
17    cin >> number1 >> number2; // read two integers from user 
18  
19    if ( number1 == number2 )                        
20       cout << number1 << " == " << number2 << endl; 
21  
22    if ( number1 != number2 ) 
23       cout << number1 << " != " << number2 << endl; 
24  
25    if ( number1 < number2 ) 
26       cout << number1 << " < " << number2 << endl; 
27  
28    if ( number1 > number2 ) 
29       cout << number1 << " > " << number2 << endl; 
30  

 

using declarations eliminate 
the need for std:: prefix

You can write cout and cin
without std:: prefix

Declaring 
variables

if statement compares the 
values of number1 and 
number2 to test for equality

If the condition is true (i.e., 
the values are equal), execute 
this statementif statement compares values 

of number1 and number2 to 
test for inequality

If the condition is true (i.e., 
the values are not equal), 
execute this statement

Compares two numbers using 
relational operators < and >


		
1
// Fig. 2.13: fig02_13.cpp



		
2
// Comparing integers using if statements, relational operators



		
3
// and equality operators.



		
4
#include <iostream> // allows program to perform input and output



		
5




		
6
using std::cout; // program uses cout



		
7
using std::cin;  // program uses cin 



		
8
using std::endl; // program uses endl



		
9




		
10
// function main begins program execution



		
11
int main()



		
12
{



		
13
   int number1; // first integer to compare



		
14
   int number2; // second integer to compare



		
15




		
16
   cout << "Enter two integers to compare: "; // prompt user for data



		
17
   cin >> number1 >> number2; // read two integers from user



		
18




		
19
   if ( number1 == number2 )                       



		
20
      cout << number1 << " == " << number2 << endl;



		
21




		
22
   if ( number1 != number2 )



		
23
      cout << number1 << " != " << number2 << endl;



		
24




		
25
   if ( number1 < number2 )



		
26
      cout << number1 << " < " << number2 << endl;



		
27




		
28
   if ( number1 > number2 )



		
29
      cout << number1 << " > " << number2 << endl;



		
30








©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

31    if ( number1 <= number2 ) 
32       cout << number1 << " <= " << number2 << endl; 
33  
34    if ( number1 >= number2 ) 
35       cout << number1 << " >= " << number2 << endl; 
36  
37    return 0; // indicate that program ended successfully 
38  
39 } // end function main 
 
Enter two integers to compare: 3 7 
3 != 7 
3 < 7 
3 <= 7 
 
 
 
Enter two integers to compare: 22 12 
22 != 12 
22 > 12 
22 >= 12 
 
 
 
Enter two integers to compare: 7 7 
7 == 7 
7 <= 7 
7 >= 7 
 

 

Compares two numbers using 
the relational operators <= and 
>=

Decision Making Cont’d


		
31
   if ( number1 <= number2 )



		
32
      cout << number1 << " <= " << number2 << endl;



		
33




		
34
   if ( number1 >= number2 )



		
35
      cout << number1 << " >= " << number2 << endl;



		
36




		
37
   return 0; // indicate that program ended successfully



		
38




		
39
} // end function main



		Enter two integers to compare: 3 7


3 != 7


3 < 7


3 <= 7






		



		Enter two integers to compare: 22 12


22 != 12


22 > 12


22 >= 12






		



		Enter two integers to compare: 7 7


7 == 7


7 <= 7


7 >= 7










©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

Good Programming Practice 15 

Place using declarations immediately after the 
#include to which they refer.  



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

Indent the statement(s) in the body of an if
statement to enhance readability. 

Good Programming Practice 16 



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

For readability, there should be no more than 
one statement per line in a program. 

Good Programming Practice 17 



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

Common Programming Error 8 
Placing a semicolon immediately after 
the right parenthesis after the condition 
in an if statement is often a logic error 
(although not a syntax error). The 
semicolon causes the body of the if
statement to be empty, so the if
statement performs no action, regardless 
of whether or not its condition is true. 



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

It is a syntax error to split an identifier by 
inserting white-space characters (e.g., writing 
main as ma in). 

Common Programming Error 9



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

A lengthy statement may be spread over 
several lines. If a single statement must be split 
across lines, choose meaningful breaking 
points, such as after a comma in a comma-
separated list, or after an operator in a lengthy 
expression. If a statement is split across two or 
more lines, indent all subsequent lines and left-
align the group of indented. 

Good Programming Practice 18 



©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

Precedence and Associativity of 
the Operators Discussed So Far  

Operators Associativity Type 

()    left to right parentheses 
* / %  left to right multiplicative 
+  -   left to right additive 

<< >>   left to right stream insertion/extraction 

< <= > >= left to right relational 
== !=   left to right equality 
=    right to left assignment 
 


		Operators

		Associativity

		Type



		()

		

		

		

		left to right

		parentheses



		*

		/

		%

		

		left to right

		multiplicative



		+ 

		-

		

		

		left to right

		additive



		<<

		>>

		

		

		left to right

		stream insertion/extraction



		<

		<=

		>

		>=

		left to right

		relational



		==

		!=

		

		

		left to right

		equality



		=

		

		

		

		right to left

		assignment







©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

Refer to the operator precedence and 
associativity chart when writing expressions 
containing many operators. Confirm that the 
operators in the expression are performed in the 
order you expect. If you are uncertain about the 
order of evaluation in a complex expression, 
break the expression into smaller statements or 
use parentheses to force the order of evaluation, 
exactly as you would do in an algebraic 
expression. 

Good Programming Practice 19 



Data Types

©1992-2012 by Pearson Education, Inc. 
All Rights Reserved.

 

Data types 
long double  

double  

float  

unsigned long int  (synonymous with unsigned long) 
long int (synonymous with long) 
unsigned int (synonymous with unsigned) 
int  

unsigned short int (synonymous with unsigned short) 
short int (synonymous with short) 
unsigned char  

char 

bool 
 

long double: 12 B
double:          8 B
float:             4 B

long:             4 B

int:                4 B 

short:            2 B

char:             1 B


	C++ Basics & data types
	Slide Number 2
	Imperative Language 
	Objects
	Object-Oriented Design (OOD)
	Object-Oriented Analysis and Design (OOAD)
	Object-Oriented Language
	C++
	Six Phases of C++ Programs
	Six Phases of C++ Programs Cont’d
	Six Phases of C++ Programs Cont’d
	Examples of C++ Programs
	Printing a Line of Text
	Printing a Line of Text Cont’d
	Slide Number 15
	Good Programming Practice 1
	Slide Number 17
	Common Programming Error 1
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Modifying the 1st C++ Program
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Good Programming Practice 6 
	Slide Number 39
	Portability Tip 1 
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Error-Prevention Tip 1 
	Good Programming Practice 11 
	Good Programming Practice 12 
	Slide Number 47
	Error-Prevention Tip 2 
	Slide Number 49
	Slide Number 50
	Good Programming Practice13 
	Slide Number 52
	Slide Number 53
	Memory Concepts
	Memory Concepts (Cont’d)
	Memory location showing the name and value of variable number1. 
	Memory locations after storing values for number1 and number2.  
	Memory locations after calculating and storing the sum of number1 and number2.  
	Arithmetic
	Common Programming Error 3 
	Arithmetic (Cont’d)
	Arithmetic (Cont’d)
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Common Programming Error 4 
	Good Programming Practice 14 
	Order in Which a Second-Degree Polynomial Is Evaluated 
	Slide Number 69
	Slide Number 70
	Common Programming Error 5 
	Common Programming Error 6 
	Common Programming Error 6 
	Common Programming Error 7 
	Slide Number 75
	Slide Number 76
	Good Programming Practice 15 
	Slide Number 78
	Slide Number 79
	Common Programming Error 8 
	Slide Number 81
	Slide Number 82
	Precedence and Associativity of the Operators Discussed So Far  
	Slide Number 84
	 Data Types

