
© C O P Y R I G H T S 2 0 1 7 E O M , H Y E O N S A N G A L L R I G H T S
R E S E R V E D

엄현상(Eom, Hyeonsang)
School of Computer Science and Engineering

Seoul National University

- Class Scope
- Constructors and Destructors
- Copy Constructors
- const Members
- Member Initializer
- friend Functions and Classes
- Static Members
- Information Hiding and Abstract Data Types
- Q&A

© C O P Y R I G H T S 2 0 1 7 E O M , H Y E O N S A N G A L L R I G H T S
R E S E R V E D

Outline

Preprocessor Wrappers

• Prevents code from being included more than
once
#ifndef TIME_H
#define TIME_H
… // code
#endif

• Prevents multiple-definition errors

Stream Manipulator setfill

• Specifies the fill character
– When an output field wider than the number of

digits in the output value
– Appears to the left of the digits in the number

• Applies for all subsequent values

Time Class
#ifndef TIME_H
#define TIME_H
class Time {
public:
Time();
void setTime(int,int,int);
void printUniversal();
void printStandard();

private:
int hour;
int minute;
int second;

};
#endif

=================================

#include <iostream>
using std::cout;
#include <iomanip>
using std::setfill;
using std::setw;
#include "Time.h"

Time::Time()
{

hour = minute = second = 0;
}

void Time::setTime(int h, int m, int s)
{

…
second = (s >= 0 && s < 60) ? s : 0;

}

void Time::printUniversal()
{

cout << setfill('0');
cout << setw(2) << hour;
…

}

void Time::printStandard()
{

cout << ((hour == 0 || hour == 12) ? 12 :
hour % 12) << “:”;
…

}

Time Class Cont’d
#include <iostream>
using std::cout;
using std::endl;

#include "Time.h"

int main()
{

Time t;

t.printUniversal();

t.printStandard();

t.setTime(13, 27, 6);

t.printUniversal();

t.printStandard();

t.setTime(99, 99, 99);

t.printUniversal();

t.printStandard();

cout << endl;

return 0;
}

sizeof Operator for Classes

• Applying operator sizeof to a class name or to
an object of that class
– will report only the size of the class’s data

members
• The compiler creates one copy (only) of the

member functions for all objects of the class
– All objects of the class share this copy

• Each object needs its own copy of the class’s
data

Class Scope
• Class scope contains
• Data members (variables declared in the class

definition)
– Member functions (functions declared in the class

definition)
– Nonmember functions are defined at file scope

• Within a class’s scope
– Class members are accessible by all member functions

• Outside a class’s scope
– public class members are referenced through a handle

• An object name, a reference to an object, or a pointer to an object

Class Scope Cont’d

• Variables declared in a member function
– Have block scope
– Known only to that function

• Hiding a class-scope variable
– In a member function, define a variable with the

same name as a variable with class scope
– To access the hidden class-scope variable, use the

scope resolution operator (::)

Class Scope Cont’d

• Dot member selection operator (.)
– Accesses the object’s members
– Used with an object’s name or with a reference to

an object
• Arrow member selection operator (->)

– Accesses the object’s members
– Used with a pointer to an object

Constructors with Default Arguments

• Can initialize data members to a consistent
state

• Constructor that defaults all its arguments
– A default constructor
– Maximum of one default constructor per class

• Any change to the default argument values of
a function requires the client code to be
recompiled

Destructors

• A special member function
– ~Time()

• Called implicitly when an object is destroyed
– When program execution leaves the scope in

which that object was instantiated
– Performs “termination housekeeping”
– Then the system reclaims the object’s memory

Destructors Cont’d

• Receives no parameters and returns no value
– May not specify a return type—not even void

• A class may have only one destructor
• If the programmer does not explicitly provide

a destructor, the compiler creates an “empty”
destructor

When Constructors and
Destructors are Called?

• Called implicitly by the compiler
• In general, destructor calls are made in the

reverse order of the corresponding constructor
calls

• Storage classes of objects can alter the order
in which destructors are called

Objects Defined in Global Scope

• Constructors are called before any other function
(including main) in that file begins execution

• The corresponding destructors are called when main
terminates
– Function exit

• Forces a program to terminate immediately
• Often used to terminate a program when an error is detected

– Function abort
• Forces the program to terminate immediately without allowing the

destructors of any objects to be called
• Usually used to indicate an abnormal termination of the program

Automatic Objects

• Constructors and destructors are called each
time execution enters and leaves the scope of
the object

• Automatic object destructors are not called if
the program terminates with an exit or abort
function

Static Local Objects

• Constructor is called only once
– When execution first reaches where the object is

defined
• Destructor is called when main terminates or

the program calls function exit
– Destructor is not called if the program terminates

with a call to function abort
• Global and static objects are destroyed in the

reverse order of their creation

Class CreatAndDestroy
#include <string>
using std::string;

#ifndef CREATE_H
#define CREATE_H

class CreateAndDestroy
{
public:
CreateAndDestroy(int, string);
~CreateAndDestroy();

private:
int objectID;
string message;

};

#endif

#include <iostream>
using std::cout;
using std::endl;

#include "CreateAndDestroy.h"

CreateAndDestroy::CreateAndDestroy(int
ID, string messageString)

{
objectID = ID;
message = messageString;

cout << "Object " << objectID;
cout << " constructor runs ";
cout << message << endl;

}

CreateAndDestroy::~CreateAndDestroy()
{

cout << "Object " << objectID;
cout << " destructor runs ";
cout << message << endl;

}

Class CreatAndDestroy Cont’d
#include <iostream>
using std::cout;
using std::endl;
#include "CreateAndDestroy.h“

void create(void);
CreateAndDestroy first(1,

"(global before main)");

int main()
{

cout << "EXECUTION BEGINS"
<< endl;

CreateAndDestroy second(2,
"(local automatic in main)");

static CreateAndDestroy
third(3, "(local static in
main)");

create();
cout << "EXECUTION RESUMES"
<< endl;

CreateAndDestroy fourth(4,
"(local automatic in main)");

cout << "EXECUTION ENDS"
<< endl;

return 0;
}

void create(void)
{

cout << "CREATE BEGINS"
<< endl;

CreateAndDestroy fifth(5,
"(local automatic in
create)");

static CreateAndDestroy
sixth(6, "(local static in
create)");

CreateAndDestroy seventh(7,
"(local automatic in
create)");

cout << "CREATE ENDS" << endl;
}

Class CreatAndDestroy Cont’d

Returning a Reference to an Object

• Alias for the name of an object
– May be used on the left side of an assignment statement
– A const reference cannot be used as a modifiable lvalue

• A public member function of a class returns a
reference to a private data member of that class
– Client code could alter private data
– Same problem would occur if a pointer to private data

were returned

Default Memberwise Assignment

• Assignment operator (=)
• Can be used to assign an object to another object of

the same type
– Each data member of the right object is assigned to the

same data member in the left object
– Shallow copy

• When data members contain pointers to dynamically
allocated memory
– May cause serious problems

Class Date
#ifndef DATE_H
#define DATE_H

class Date
{
public:

Date(int = 1, int = 1, int
= 2000);
void print();

private:
int month;
int day;
int year;

};
#endif

#include <iostream>
using std::cout;
using std::endl;

#include "Date.h"

Date::Date(int m, int d, int
y)

{
month = m;
day = d;
year = y;

}

void Date::print()
{

cout << month << '/'
<< day << '/' << year;

}

Class Date Cont’d
#include <iostream>
using std::cout;
using std::endl;

#include "Date.h"

int main()
{

Date date1(7, 4, 2004);
Date date2;

cout << "date1 = ";
date1.print();
cout << "\ndate2 = ";
date2.print();

date2 = date1;

date2.print();
cout << endl;

return 0;
}

Copy Constructors

• Enables pass-by-value for objects
– Used to copy original object’s values into new

object to be passed to a function or returned from
a function

• Compiler provides a default copy constructor
– Copies each member of the original object into

the corresponding member of the new object (i.e.,
memberwise assignment)

– Shallow copy

Copy Constructors Cont’d

• When data members contain pointers to
dynamically allocated memory
– May cause serious problems

• Need to have a deep copy
• May need a destructor and operator=

Class Point
class Point
{
public:

…
Point();
Point(const Point& p);
…

private:
int x;
int y;

};

Point::Point(int px, int py)
{

x = px;
y = py;

}

Point::Point(const Point& p)
{

x = p.x;
y = p.y;

}

Point p(1,2); //constructor
Point q(3,4); //constructor
Point r(p); //copy constructor
Point t = q; //copy constructor
p = t; //assignment
…
foo(p); //copy constructor
…

Const Objects

• Keyword const
• The object is not modifiable

– compilation errors
– Attempts to modify the object are caught at

compile time rather than causing execution-time
errors

• A const object cannot be modified by
assignment, so it must be initialized

Const Member Functions

• Only for const objects
• Not allowed to modify the object
• Specified as const both in its prototype and in its

definition
• Not allowed for constructors and destructors
• Can be overloaded with a non-const version

– The compiler chooses which overloaded member function
to use based on the object on which the function is
invoked

Class Time
class Time
{
public:
Time(int = 0, int = 0, int = 0);

void setTime(int, int, int);
void setHour(int);
void setMinute(int);
void setSecond(int);

int getHour() const;
int getMinute() const;
int getSecond() const;

void printUniversal() const;
void printStandard(); // const

private:
int hour;
int minute;
int second;

};

Time::Time(int hour, int minute, int
second)

{
setTime(hour, minute, second);

}

void Time::setTime(int hour, int
minute, int second)

{
setHour(hour);
setMinute(minute);
setSecond(second);

}

void Time::setHour(int h)
{

hour = (h >= 0 && h < 24) ? h : 0;
}

void Time::setMinute(int m)
{

minute = (m >= 0 && m < 60) ? m :
0;

}

Class Time Cont’d
void Time::setSecond(int s)
{

second = (s >= 0 && s < 60) ?
s : 0;

}

int Time::getHour() const
{

return hour;
}

int Time::getMinute() const
{

return minute;
}

int Time::getSecond() const
{

return second;
}

void Time::printUniversal() const
{

cout << setfill('0')
<< setw(2) << hour << ":"
<< setw(2) << minute << ":"
<< setw(2) << second;

}

void Time::printStandard() //
const

{
cout << ((hour == 0 || hour
== 12) ? 12 : hour % 12)
<< ":" << setfill('0')
<< setw(2) << minute << ":"
<< setw(2) << second
<< (hour < 12 ? " AM" : "
PM");

}

Class Time Cont’d

int main()
{

Time wakeUp(6,45,0);
const Time noon(12,0,0);

wakeUp.setHour(18);
noon.setHour(12);
wakeUp.getHour();
noon.getMinute();
noon.printUniversal();
noon.printStandard();

return 0;
}

Member Initializer

• Required for initializing,
– Const data members
– Data members that are references

• Can be used for any data member
• Member initializer list

– Between a constructor’s parameter list and the
constructor’s body

– Separated from the parameter list with a colon (:)
– The data member name followed by parentheses

containing the member’s initial value

Member Initializer

• Member initializer list
– Multiple member initializers are separated by commas
– Executes before the body of the constructor executes

• For a const data member of a class, a member
initializer must be used to provide the constructor
with the initial value of the data member for an
object of the class
– The same is true for references

Class Increment
class Increment
{
public:

Increment(int c=0,int i=1);

void addIncrement()
{

count += increment;
}

void print() const;

private:
int count;
const int increment;

};

Increment::Increment(int c,
int i)
: count(c),
// initializer for
// non-const member
increment(i)
// required initializer
// for const member

{
}

void Increment::print() const
{

cout << "count = "
<< count << ", increment =
" << increment << endl;

}

Composition

• Has-a relationship
• A class can have objects of other classes as members
• Initializing member objects

– Member initializers pass arguments from the object’s
constructor to member-object constructors

– Member objects are constructed in the order in which they
are declared in the class definition
• Not in the order they are listed in the constructor’s member

initializer list
• Before the enclosing class object (host object) is constructed

Class Date
class Date
{
public:
Date(int = 1, int = 1, int =
1900);

void print() const;
~Date();

private:
int month;
int day;
int year;

int checkDay(int) const;
};

Date::Date(int mn, int dy, int
yr)

{
if (mn > 0 && mn <= 12)

month = mn;
else
{

month = 1;
cout << "Invalid month (";
cout << mn << ") set to

1.\n";
}
year = yr;
day = checkDay(dy);

cout << "Date object
constructor for date ";

print();
cout << endl;

}

Class Date Cont’d
void Date::print() const
{

cout << month << '/' << day
<< '/' << year;

}

Date::~Date()
{

cout << "Date object
destructor for date ";

print();
cout << endl;

}

int Date::checkDay(int testDay)
const

{
static const int
daysPerMonth[13] =
{ 0, 31, 28, 31, 30, 31, 30,

31, 31, 30, 31, 30, 31 };

if (testDay > 0 && testDay <=
daysPerMonth[month])
return testDay;

if (month == 2 && testDay ==
29 && (year % 400 == 0 ||
(year % 4 == 0 && year %

100 != 0)))
return testDay;

cout << "Invalid day ("
<< testDay << ") set to 1.\n";

return 1;

Class Employee

class Employee
{
public:

Employee(const char * const, const
char * const,
const Date &, const Date &);

void print() const;
~Employee();

private:
char firstName[25];
char lastName[25];
const Date birthDate;
const Date hireDate;

};

Employee::Employee(const char * const
first, const char * const last,

const Date &dateOfBirth, const Date
&dateOfHire)

: birthDate(dateOfBirth),
hireDate(dateOfHire)

{
int length = strlen(first);
length = (length < 25 ? length :
24);

strncpy(firstName, first, length);
firstName[length] = '\0';

length = strlen(last);
length = (length < 25 ? length :
24);

strncpy(lastName, last, length);
lastName[length] = '\0';

cout << "Employee object constructor:
";

cout << firstName << ' ' << lastName
<< endl;

}

Class Employee Cont’d

void Employee::print() const
{

cout << lastName << ", "
<< firstName << " Hired: ";

hireDate.print();
cout << " Birthday: ";
birthDate.print();
cout << endl;

}

Employee::~Employee()
{

cout << "Employee object
destructor: " ;

cout << lastName << ", "
<< firstName << endl;

}

int main()
{

Date birth(7, 24, 1949);
Date hire(3, 12, 1988);
Employee manager("Bob",
"Blue", birth, hire);

cout << endl;
manager.print();

cout << "\nTest Date
constructor with invalid
values:\n";

Date lastDayOff(14, 35,
1994);

cout << endl;
return 0;

}

Friend Functions and
Classes of a Class

• Defined outside that class’s scope
• Has the right to access the non-public and

public members of that class
• Standalone functions or entire classes
• Can enhance performance
• The function prototype in the class definition

preceded by keyword friend

Friend Functions and
Classes of a Class Cont’d

• Member access notions of private, protected,
and public are not relevant to friend
declarations
– Friend declarations can be placed anywhere in a

class definition
• Place a declaration of the form “friend class

Class2;” in the definition of class Class1
– All member functions of class Class2 are friends

of class Class1

Class Count
class Count
{

friend void setX(Count &,
int);

public
Count()

: x(0)
{
}

void print() const
{

cout << x << endl;
}

private:
int x;

};

void setX(Count &c, int val)
{

c.x = val;
}

int main()
{

Count counter;

cout << "counter.x: ";
counter.print();

setX(counter, 8);
cout << "counter.x after
call to setX friend
function: ";
counter.print();

return 0;
}

Friend Functions and
Classes of a Class Cont’d

• For class B to be a friend of class A, class A must
explicitly declare (in its definition) that class B is its
friend

• Friendship relation
– Neither symmetric nor transitive

• It is possible to specify overloaded functions as
friends of a class
– Each overloaded function intended to be a friend must be

explicitly declared as a friend of the class

this Pointer

• Access to an object itself through a pointer
called this (keyword)

• this pointer is not part of the object itself
• Passed (by the compiler) as an implicit

argument to each of the object’s non-static
member functions

• Implicit access when accessing members
directly

Class Test
• Type of the this pointer

– Depends on the type of the object and whether the
executing member function is const

class Test
{
public:
Test(int = 0);
void print() const;

private:
int x;

};

Test::Test(int value)
: x(value)

{
}

void Test::print() const
{

cout << "x= " << x;
cout << “\nthis->x=" << this-
>x;
cout << "\n(*this).x="
<< (*this).x << endl;

}

int main()
{

Test testObject(12);

testObject.print();

return 0;
}

Cascaded Member-Function Calls

• Enabled by member functions returning the
dereferenced this pointer

• t.setMinute(30).setSecond(22);
– Calls t.setMinute(30);
– Then calls t.setSecond(22);

Class Time
class Time
{
public:
Time(int = 0, int = 0, int = 0);

Time &setTime(int, int, int);
Time &setHour(int);
Time &setMinute(int);
Time &setSecond(int);

int getHour() const;
int getMinute() const;
int getSecond() const;

void printUniversal() const;
void printStandard() const;

private:
int hour;
int minute;
int second;

};

Time::Time(int hr, int min, int sec)
{

setTime(hr, min, sec);
}

Time &Time::setTime(int h, int m, int s)
{

setHour(h);
setMinute(m);
setSecond(s);
return *this;

}

Time &Time::setHour(int h)
{

hour = (h >= 0 && h < 24) ? h : 0;
return *this;

}

Time &Time::setMinute(int m)
{

minute = (m >= 0 && m < 60) ? m : 0;
return *this;

}

Class Time Cont’d
Time &Time::setSecond(int s)
{

second = (s >= 0 && s < 60) ?
s : 0;

return *this;
}

int Time::getHour() const
{

return hour;
}

int Time::getMinute() const
{

return minute;
}

int Time::getSecond() const
{

return second;
}

void Time::printUniversal() const
{

cout << setfill('0')
<< setw(2) << hour << ":"
<< setw(2) << minute

<< ":" << setw(2) << second;
}

void Time::printStandard() const
{

cout << ((hour == 0 || hour
== 12) ? 12 : hour % 12)
<< ":" << setfill('0')

<< setw(2) << minute
<< ":" << setw(2)

<< second << (hour < 12 ? "
AM" : " PM");

}

Class Time Cont’d
int main()
{

Time t;

t.setHour(18).setMinute(30).se
tSecond(22);

cout << "Universal time: ";
t.printUniversal();

cout << "\nStandard time: ";
t.printStandard();

cout << "\n\nNew standard time: ";

t.setTime(20, 20,
20).printStandard();

cout << endl;

return 0;
}

Dynamic Memory Management

• To allocate and deallocate memory for any built-in
or user-defined type
– Operators new and delete

• new
– Allocates (i.e., reserves) storage of the proper size for an

object at execution time
– Calls a constructor to initialize the object
– Returns a pointer of the type specified
– Works for any fundamental type or any class type

• Heap

Dynamic Memory Management
Cont’d

• delete
– Destroys a dynamically allocated object
– Calls the destructor for the object
– Deallocates (i.e., releases) memory from the free store

• Initializing an object allocated by new
– Initializer for a newly created fundamental-type variable
double *ptr = new double(3.14159);

– Specify a comma-separated list of arguments to the
constructor of an object

Time *timePtr = new Time(12, 45, 0);

Dynamic Memory Management
Cont’d

• Allocating arrays dynamically
int *gradesArray = new int[10];

• Delete a dynamically allocated array:
delete [] gradesArray;

– This deallocates the array to which gradesArray points
– If the pointer points to an array of objects

• First calls the destructor for every object in the array
• Then deallocates the memory

– If the statement did not include the square brackets ([]) and
gradesArray pointed to an array of objects

• Only the first object in the array would have a destructor call

• After deleting dynamically allocated memory, set the pointer
that referred to that memory to 0

static Data Member

• Only one copy of a variable shared by all objects of
a class
– Class-wide information

• Declaration begins with keyword static
• May seem like global variables but have class scope
• Can be declared public, private, or protected
• static data members of class types (i.e., static

member objects) that have default constructors
– Need not be initialized because their default constructors

will be called

static Data Member Cont’d

• Fundamental-type static data members
– Initialized by default to 0
– A static data member can be initialized once (and only

once)
• A const static data member of int or enum type

– Can be initialized in its declaration in the class definition
• All other static data members

– Must be defined at file scope (i.e., outside the body of the
class definition)

– Can be initialized only in those definitions

static Data Member Cont’d

• Exists even when no objects of the class exist
– To access a public static class member when no

objects of the class exist
• Prefix the class name and the binary scope resolution

operator (::)

Martian::martianCount

static Member Function

• Is a service of the class, not of a specific
object of the class

• static applied to an item at file scope
– That item becomes known only in that file
– The static members of the class need to be

available from any client code that accesses the
file
• We cannot declare them static in the .cpp file—we

declare them static only in the .h file

static Member Function Cont’d
• Declare a member function static

– If it does not access non-static data members or non-static member
functions of the class

• Does not have a this pointer
• Static data members and static member functions exist

independently of any objects of a class
– When a static member function is called, there might not be any

objects of its class in memory

• Sometimes it is recommended that all calls to static member
functions be made using the class name
– not an object handle

• A const static member function is a compilation error

Class Employee
#ifndef EMPLOYEE_H
#define EMPLOYEE_H
class Employee
{
public:

Employee(const char * const,
const char * const);

~Employee();
const char *getFirstName()
const;

const char *getLastName()
const;

static int getCount();
private:

char *firstName;
char *lastName;

static int count;
};
#endif

#include <iostream>
using std::cout;
using std::endl;

#include <cstring>
using std::strlen;
using std::strcpy;

#include "Employee.h"

int Employee::count = 0;

int Employee::getCount()
{

return count;
}

Class Employee Cont’d
Employee::Employee(const char * const

first, const char * const last)
{

firstName = new char[strlen(first)
+ 1];

strcpy(firstName, first);

lastName = new char[strlen(last)
+ 1];

strcpy(lastName, last);

count++;

cout << "Employee constructor for "
<< firstName << ' ' << lastName
<< " called." << endl;

}

const char *Employee::getFirstName()
const

{
return firstName;

}

Employee::~Employee()
{

cout << "~Employee() called for "
<< firstName
<< ' ' << lastName << endl;

delete [] firstName;
delete [] lastName;

count--;
}

const char *Employee::getLastName()
const

{
return lastName;

}

Class Employee Cont’d
#include <iostream>
using std::cout;
using std::endl;

#include "Employee.h"

int main()
{

cout << "Number of employees before
instantiation of any objects is "
<< Employee::getCount() << endl;

Employee *e1Ptr = new
Employee("Susan", "Baker");

Employee *e2Ptr = new
Employee("Robert", "Jones");

cout << "Number of employees after
objects are instantiated is "
<< e1Ptr->getCount();

cout << "\n\nEmployee 1: "
<< e1Ptr->getFirstName() << " "

<< e1Ptr->getLastName()
<< "\nEmployee 2: "
<< e2Ptr->getFirstName() << " "

<< e2Ptr->getLastName() << "\n\n";

delete e1Ptr;
e1Ptr = 0;
delete e2Ptr;
e2Ptr = 0;

cout << "Number of employees after
objects are deleted is "
<< Employee::getCount() << endl;

return 0;
}

Data Abstraction and
Information Hiding

• Information Hiding
• Data abstraction

– Client cares about what functionality a class offers, not
about how that functionality is implemented

• Primary activities of object-oriented programming in
C++
– Creation of types (i.e., classes)
– Expression of the interactions among objects of those

types

Abstract data types (ADTs)

• Improve the program development process
• Representing real-world notions Types like int,

double, char and others are all ADTs
– e.g., int is an abstract representation of an integer

• Capture two notions:
– Data representation
– Operations that can be performed on the data

Array Abstract Data Type

• Many array operations not built into C++
– e.g., subscript range checking

• Programmers can develop an array ADT as a
class that is preferable to primitive arrays

• C++ Standard Library class template vector

Container Classes

• Collection classes
• Classes designed to hold collections of objects
• Services such as insertion, deletion, searching,

sorting, and member testing
• Arrays, Vectors, Stacks, Queues, Trees,

Linked lists

Iterators
• Iterator objects
• Commonly associated with container classes
• An object that walks through a collection, returning the next

item (or performing some action on the next item)
• A container class can have several iterators operating on it at

once
• Each iterator maintains its own position information

vector<int> v; // fill up v with data...
vector<int>::iterator it;
for (it = v.begin(); it != v.end(); it++) {

cout << *it << endl;
}

	Computer programming�CLASS MEMBERS
	Slide Number 2
	Preprocessor Wrappers
	Stream Manipulator setfill
	Time Class
	Time Class Cont’d
	sizeof Operator for Classes
	Class Scope
	Class Scope Cont’d
	Class Scope Cont’d
	Constructors with Default Arguments
	Destructors
	Destructors Cont’d
	When Constructors and Destructors are Called?
	Objects Defined in Global Scope
	Automatic Objects
	Static Local Objects
	Class CreatAndDestroy
	Class CreatAndDestroy Cont’d
	Class CreatAndDestroy Cont’d
	Returning a Reference to an Object
	Default Memberwise Assignment
	Class Date
	Class Date Cont’d
	Copy Constructors
	Copy Constructors Cont’d
	Class Point
	Const Objects
	Const Member Functions
	Class Time
	Class Time Cont’d
	Class Time Cont’d
	Member Initializer
	Member Initializer
	Class Increment
	Composition
	Class Date
	Class Date Cont’d
	Class Employee
	Class Employee Cont’d
	Friend Functions and �Classes of a Class
	Friend Functions and �Classes of a Class Cont’d
	Class Count
	Friend Functions and �Classes of a Class Cont’d
	this Pointer
	Class Test
	Cascaded Member-Function Calls
	Class Time
	Class Time Cont’d
	Class Time Cont’d
	Dynamic Memory Management
	Dynamic Memory Management Cont’d
	Dynamic Memory Management Cont’d
	static Data Member
	static Data Member Cont’d
	static Data Member Cont’d
	static Member Function
	static Member Function Cont’d
	Class Employee
	Class Employee Cont’d
	Class Employee Cont’d
	Data Abstraction and Information Hiding
	Abstract data types (ADTs)
	Array Abstract Data Type
	Container Classes
	Iterators

