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Preprocessor Wrappers

• Prevents code from being included more than 
once
#ifndef TIME_H
#define TIME_H
… // code
#endif

• Prevents multiple-definition errors



Stream Manipulator setfill

• Specifies the fill character
– When an output field wider than the number of 

digits in the output value 
– Appears to the left of the digits in the number

• Applies for all subsequent values



Time Class
#ifndef TIME_H
#define TIME_H
class Time {
public:
Time(); 
void setTime(int,int,int); 
void printUniversal(); 
void printStandard();

private:
int hour; 
int minute; 
int second; 

}; 
#endif

=================================

#include <iostream>
using std::cout;
#include <iomanip>
using std::setfill;
using std::setw;
#include "Time.h"

Time::Time() 
{ 

hour = minute = second = 0; 
}

void Time::setTime( int h, int m, int s ) 
{

… 
second = ( s >= 0 && s < 60 ) ? s : 0; 

}

void Time::printUniversal() 
{

cout << setfill( '0' );
cout << setw( 2 ) << hour;
…

}

void Time::printStandard() 
{

cout << (( hour == 0 || hour == 12 ) ? 12 : 
hour % 12 ) << “:”; 
…

}



Time Class Cont’d
#include <iostream>
using std::cout;
using std::endl;

#include "Time.h"

int main()
{

Time t; 

t.printUniversal(); 

t.printStandard(); 

t.setTime( 13, 27, 6 ); 

t.printUniversal(); 

t.printStandard(); 

t.setTime( 99, 99, 99 ); 

t.printUniversal(); 

t.printStandard(); 

cout << endl;

return 0; 
}



sizeof Operator for Classes

• Applying operator sizeof to a class name or to 
an object of that class
– will report only the size of the class’s data 

members
• The compiler creates one copy (only) of the 

member functions for all objects of the class 
– All objects of the class share this copy 

• Each object needs its own copy of the class’s 
data



Class Scope
• Class scope contains
• Data members (variables declared in the class 

definition) 
– Member functions (functions declared in the class 

definition)
– Nonmember functions are defined at file scope

• Within a class’s scope
– Class members are accessible by all member functions

• Outside a class’s scope
– public class members are referenced through a handle

• An object name, a reference to an object, or a pointer to an object



Class Scope Cont’d

• Variables declared in a member function 
– Have block scope
– Known only to that function

• Hiding a class-scope variable
– In a member function, define a variable with the 

same name as a variable with class scope
– To access the hidden class-scope variable, use the 

scope resolution operator (::)



Class Scope Cont’d

• Dot member selection operator (.) 
– Accesses the object’s members
– Used with an object’s name or with a reference to 

an object
• Arrow member selection operator (->)

– Accesses the object’s members
– Used with a pointer to an object



Constructors with Default Arguments

• Can initialize data members to a consistent 
state

• Constructor that defaults all its arguments 
– A default constructor
– Maximum of one default constructor per class

• Any change to the default argument values of 
a function requires the client code to be 
recompiled



Destructors

• A special member function
– ~Time()

• Called implicitly when an object is destroyed
– When program execution leaves the scope in 

which that object was instantiated
– Performs “termination housekeeping”
– Then the system reclaims the object’s memory



Destructors Cont’d

• Receives no parameters and returns no value
– May not specify a return type—not even void

• A class may have only one destructor
• If the programmer does not explicitly provide 

a destructor, the compiler creates an “empty” 
destructor



When Constructors and 
Destructors are Called?

• Called implicitly by the compiler
• In general, destructor calls are made in the 

reverse order of the corresponding constructor 
calls

• Storage classes of objects can alter the order 
in which destructors are called



Objects Defined in Global Scope

• Constructors are called before any other function 
(including main) in that file begins execution 

• The corresponding destructors are called when main 
terminates
– Function exit 

• Forces a program to terminate immediately
• Often used to terminate a program when an error is detected

– Function abort 
• Forces the program to terminate immediately without allowing the 

destructors of any objects to be called
• Usually used to indicate an abnormal termination of the program



Automatic Objects

• Constructors and destructors are called each 
time execution enters and leaves the scope of 
the object

• Automatic object destructors are not called if 
the program terminates with an exit or abort 
function 



Static Local Objects

• Constructor is called only once
– When execution first reaches where the object is 

defined
• Destructor is called when main terminates or 

the program calls function exit
– Destructor is not called if the program terminates 

with a call to function abort 
• Global and static objects are destroyed in the 

reverse order of their creation



Class CreatAndDestroy
#include <string>
using std::string;

#ifndef CREATE_H
#define CREATE_H

class CreateAndDestroy
{
public:
CreateAndDestroy( int, string ); 
~CreateAndDestroy(); 

private:
int objectID; 
string message; 

}; 

#endif

#include <iostream>
using std::cout;
using std::endl;

#include "CreateAndDestroy.h"

CreateAndDestroy::CreateAndDestroy( int 
ID, string messageString )

{
objectID = ID; 
message = messageString; 

cout << "Object " << objectID;
cout << "   constructor runs   ";
cout << message << endl;

}

CreateAndDestroy::~CreateAndDestroy()
{ 

cout << "Object " << objectID;
cout << "   destructor runs   "; 
cout << message << endl; 

}



Class CreatAndDestroy Cont’d
#include <iostream>
using std::cout;
using std::endl;
#include "CreateAndDestroy.h“

void create( void ); 
CreateAndDestroy first( 1, 

"(global before main)" ); 

int main()
{

cout << "EXECUTION BEGINS" 
<< endl;

CreateAndDestroy second( 2, 
"(local automatic in main)" );

static CreateAndDestroy 
third( 3, "(local static in 
main)" );

create(); 
cout << "EXECUTION RESUMES" 
<< endl;

CreateAndDestroy fourth( 4, 
"(local automatic in main)" );

cout << "EXECUTION ENDS" 
<< endl;

return 0;
}

void create( void )
{

cout << "CREATE BEGINS" 
<< endl;

CreateAndDestroy fifth( 5, 
"(local automatic in 
create)" );

static CreateAndDestroy
sixth( 6, "(local static in 
create)" );

CreateAndDestroy seventh( 7, 
"(local automatic in 
create)" );

cout << "CREATE ENDS" << endl;
}



Class CreatAndDestroy Cont’d



Returning a Reference to an Object

• Alias for the name of an object
– May be used on the left side of an assignment statement 
– A const reference cannot be used as a modifiable lvalue

• A public member function of a class returns a 
reference to a private data member of that class
– Client code could alter private data
– Same problem would occur if a pointer to private data 

were returned



Default Memberwise Assignment

• Assignment operator (=)
• Can be used to assign an object to another object of 

the same type
– Each data member of the right object is assigned to the 

same data member in the left object
– Shallow copy

• When data members contain pointers to dynamically 
allocated memory
– May cause serious problems 



Class Date
#ifndef DATE_H
#define DATE_H

class Date 
{
public:

Date( int = 1, int = 1, int
= 2000 ); 
void print();

private:
int month;
int day;
int year;

}; 
#endif

#include <iostream>
using std::cout;
using std::endl;

#include "Date.h"

Date::Date( int m, int d, int
y )

{
month = m;
day = d;
year = y;

}

void Date::print() 
{ 

cout << month << '/' 
<< day << '/' << year; 

}



Class Date Cont’d
#include <iostream>
using std::cout;
using std::endl;

#include "Date.h"

int main()
{

Date date1( 7, 4, 2004 );
Date date2; 

cout << "date1 = ";
date1.print();
cout << "\ndate2 = ";
date2.print();

date2 = date1; 

date2.print();
cout << endl;

return 0;
}



Copy Constructors

• Enables pass-by-value for objects
– Used to copy original object’s values into new 

object to be passed to a function or returned from 
a function

• Compiler provides a default copy constructor
– Copies each member of the original object into 

the corresponding member of the new object (i.e., 
memberwise assignment)

– Shallow copy



Copy Constructors Cont’d

• When data members contain pointers to 
dynamically allocated memory
– May cause serious problems 

• Need to have a deep copy
• May need a destructor and operator=



Class Point
class Point
{
public:

…
Point();
Point(const Point& p);
…

private:
int x;
int y;

};

Point::Point(int px, int py)
{

x = px;
y = py;

}

Point::Point(const Point& p)
{

x = p.x;
y = p.y;

}

Point p(1,2); //constructor
Point q(3,4); //constructor
Point r(p);   //copy constructor
Point t = q;  //copy constructor
p = t;        //assignment
…
foo(p);       //copy constructor
…



Const Objects

• Keyword const
• The object is not modifiable 

– compilation errors
– Attempts to modify the object are caught at 

compile time rather than causing execution-time 
errors

• A const object cannot be modified by 
assignment, so it must be initialized



Const Member Functions

• Only for const objects
• Not allowed to modify the object 
• Specified as const both in its prototype and in its 

definition
• Not allowed for constructors and destructors
• Can be overloaded with a non-const version 

– The compiler chooses which overloaded member function 
to use based on the object on which the function is 
invoked



Class Time
class Time 
{
public:
Time( int = 0, int = 0, int = 0 ); 

void setTime( int, int, int ); 
void setHour( int ); 
void setMinute( int ); 
void setSecond( int ); 

int getHour() const; 
int getMinute() const; 
int getSecond() const; 

void printUniversal() const; 
void printStandard(); // const

private:
int hour; 
int minute; 
int second; 

}; 

Time::Time( int hour, int minute, int 
second ) 

{ 
setTime( hour, minute, second ); 

}

void Time::setTime( int hour, int 
minute, int second )

{
setHour( hour );
setMinute( minute );
setSecond( second );

}

void Time::setHour( int h ) 
{

hour = ( h >= 0 && h < 24 ) ? h : 0; 
}

void Time::setMinute( int m )
{ 

minute = ( m >= 0 && m < 60 ) ? m : 
0; 

}



Class Time Cont’d
void Time::setSecond( int s )
{ 

second = ( s >= 0 && s < 60 ) ? 
s : 0; 

}

int Time::getHour() const
{ 

return hour; 
}

int Time::getMinute() const
{

return minute; 
}

int Time::getSecond() const
{ 

return second;
}

void Time::printUniversal() const
{

cout << setfill( '0' ) 
<< setw( 2 ) << hour << ":" 
<< setw( 2 ) << minute << ":" 
<< setw( 2 ) << second;

}

void Time::printStandard() // 
const

{
cout << ( ( hour == 0 || hour 
== 12 ) ? 12 : hour % 12 ) 
<< ":" << setfill( '0' ) 
<< setw( 2 ) << minute << ":" 
<< setw( 2 ) << second 
<< ( hour < 12 ? " AM" : " 
PM" );

}



Class Time Cont’d

int main()
{

Time wakeUp(6,45,0); 
const Time noon(12,0,0);

wakeUp.setHour( 18 ); 
noon.setHour( 12 );    
wakeUp.getHour();      
noon.getMinute(); 
noon.printUniversal(); 
noon.printStandard();

return 0;
}



Member Initializer

• Required for initializing,
– Const data members
– Data members that are references

• Can be used for any data member
• Member initializer list

– Between a constructor’s parameter list and the 
constructor’s body

– Separated from the parameter list with a colon (:)
– The data member name followed by parentheses 

containing the member’s initial value



Member Initializer

• Member initializer list
– Multiple member initializers are separated by commas
– Executes before the body of the constructor executes

• For a const data member of a class, a member 
initializer must be used to provide the constructor 
with the initial value of the data member for an 
object of the class 
– The same is true for references



Class Increment
class Increment 
{
public:

Increment(int c=0,int i=1); 

void addIncrement() 
{ 

count += increment; 
}

void print() const; 

private:
int count;
const int increment; 

}; 

Increment::Increment( int c, 
int i )
: count( c ), 
// initializer for 
// non-const member
increment( i ) 
// required initializer 
// for const member     

{ 
}

void Increment::print() const
{

cout << "count = " 
<< count << ", increment = 
" << increment << endl;

}



Composition

• Has-a relationship
• A class can have objects of other classes as members
• Initializing member objects

– Member initializers pass arguments from the object’s 
constructor to member-object constructors

– Member objects are constructed in the order in which they 
are declared in the class definition
• Not in the order they are listed in the constructor’s member 

initializer list
• Before the enclosing class object (host object) is constructed



Class Date
class Date 
{
public:
Date( int = 1, int = 1, int = 
1900 ); 

void print() const; 
~Date(); 

private:
int month; 
int day; 
int year; 

int checkDay( int ) const; 
}; 

Date::Date( int mn, int dy, int
yr )

{
if ( mn > 0 && mn <= 12 )

month = mn;
else 
{                     

month = 1; 
cout << "Invalid month (";
cout << mn << ") set to 

1.\n";
}
year = yr; 
day = checkDay( dy ); 

cout << "Date object 
constructor for date ";

print();                   
cout << endl;

}



Class Date Cont’d
void Date::print() const
{

cout << month << '/' << day 
<< '/' << year; 

}

Date::~Date()
{ 

cout << "Date object 
destructor for date ";

print();
cout << endl;

}

int Date::checkDay( int testDay ) 
const

{
static const int 
daysPerMonth[ 13 ] = 
{ 0, 31, 28, 31, 30, 31, 30, 

31, 31, 30, 31, 30, 31 };

if ( testDay > 0 && testDay <= 
daysPerMonth[ month ] )
return testDay;

if ( month == 2 && testDay == 
29 && ( year % 400 == 0 || 
( year % 4 == 0 && year % 

100 != 0 ) ) )
return testDay;

cout << "Invalid day (" 
<< testDay << ") set to 1.\n";

return 1; 



Class Employee

class Employee
{
public:

Employee( const char * const, const 
char * const, 
const Date &, const Date & );

void print() const;
~Employee(); 

private:
char firstName[ 25 ];
char lastName[ 25 ];
const Date birthDate; 
const Date hireDate; 

}; 

Employee::Employee( const char * const 
first, const char * const last,

const Date &dateOfBirth, const Date 
&dateOfHire )

: birthDate( dateOfBirth ), 
hireDate( dateOfHire )

{
int length = strlen( first );
length = ( length < 25 ? length : 
24 );

strncpy( firstName, first, length );
firstName[ length ] = '\0';

length = strlen( last );
length = ( length < 25 ? length : 
24 );

strncpy( lastName, last, length );
lastName[ length ] = '\0';

cout << "Employee object constructor: 
";

cout << firstName << ' ' << lastName 
<< endl;

}



Class Employee Cont’d

void Employee::print() const
{

cout << lastName << ", " 
<< firstName << "  Hired: ";

hireDate.print();
cout << "  Birthday: ";
birthDate.print();
cout << endl;

}

Employee::~Employee()
{ 

cout << "Employee object 
destructor: " ;

cout << lastName << ", " 
<< firstName << endl;

}

int main()
{

Date birth( 7, 24, 1949 );
Date hire( 3, 12, 1988 );
Employee manager( "Bob", 
"Blue", birth, hire );

cout << endl;
manager.print();

cout << "\nTest Date 
constructor with invalid 
values:\n";

Date lastDayOff( 14, 35, 
1994 ); 

cout << endl;
return 0;

}



Friend Functions and 
Classes of a Class

• Defined outside that class’s scope
• Has the right to access the non-public and 

public members of that class
• Standalone functions or entire classes 
• Can enhance performance
• The function prototype in the class definition 

preceded by keyword friend



Friend Functions and 
Classes of a Class Cont’d

• Member access notions of private, protected, 
and public are not relevant to friend 
declarations
– Friend declarations can be placed anywhere in a 

class definition
• Place a declaration of the form “friend class 

Class2;” in the definition of class Class1
– All member functions of class Class2 are friends 

of class Class1



Class Count
class Count 
{

friend void setX( Count &, 
int ); 

public
Count() 

: x( 0 )
{
}

void print() const       
{ 

cout << x << endl; 
}

private:
int x;

}; 

void setX( Count &c, int val )
{

c.x = val; 
}

int main()
{

Count counter; 

cout << "counter.x: ";
counter.print();

setX( counter, 8 ); 
cout << "counter.x after 
call to setX friend 
function: ";
counter.print();

return 0;
}



Friend Functions and 
Classes of a Class Cont’d

• For class B to be a friend of class A, class A must 
explicitly declare (in its definition) that class B is its 
friend

• Friendship relation 
– Neither symmetric nor transitive

• It is possible to specify overloaded functions as 
friends of a class
– Each overloaded function intended to be a friend must be 

explicitly declared as a friend of the class



this Pointer

• Access to an object itself through a pointer 
called this (keyword)

• this pointer is not part of the object itself
• Passed (by the compiler) as an implicit 

argument to each of the object’s non-static 
member functions

• Implicit access when accessing members 
directly



Class Test
• Type of the this pointer 

– Depends on the type of the object and whether the 
executing member function is const

class Test 
{ 
public:
Test( int = 0 ); 
void print() const;

private:
int x;

}; 

Test::Test( int value ) 
: x( value )

{ 
}

void Test::print() const
{

cout << "x= " << x;
cout << “\nthis->x=" << this-
>x;
cout << "\n(*this).x=" 
<< ( *this ).x << endl;

}

int main()
{

Test testObject( 12 ); 

testObject.print();

return 0;
}



Cascaded Member-Function Calls

• Enabled by member functions returning the 
dereferenced this pointer

• t.setMinute( 30 ).setSecond( 22 );
– Calls t.setMinute( 30 );
– Then calls t.setSecond( 22 );



Class Time
class Time 
{
public:
Time( int = 0, int = 0, int = 0 ); 

Time &setTime( int, int, int ); 
Time &setHour( int ); 
Time &setMinute( int ); 
Time &setSecond( int ); 

int getHour() const; 
int getMinute() const; 
int getSecond() const; 

void printUniversal() const; 
void printStandard() const; 

private:
int hour; 
int minute; 
int second; 

}; 

Time::Time( int hr, int min, int sec ) 
{ 

setTime( hr, min, sec ); 
}

Time &Time::setTime(int h, int m, int s) 
{

setHour( h );
setMinute( m );
setSecond( s ); 
return *this; 

}

Time &Time::setHour( int h )
{

hour = ( h >= 0 && h < 24 ) ? h : 0; 
return *this;

}

Time &Time::setMinute( int m )
{

minute = ( m >= 0 && m < 60 ) ? m : 0; 
return *this; 

}



Class Time Cont’d
Time &Time::setSecond( int s )
{

second = ( s >= 0 && s < 60 ) ? 
s : 0; 

return *this; 
}

int Time::getHour() const 
{ 

return hour; 
}

int Time::getMinute() const 
{ 

return minute; 
}

int Time::getSecond() const 
{ 

return second; 
}

void Time::printUniversal() const
{

cout << setfill( '0' ) 
<< setw( 2 ) << hour << ":"
<< setw( 2 ) << minute 

<< ":" << setw( 2 ) << second;
}

void Time::printStandard() const
{

cout << ( ( hour == 0 || hour 
== 12 ) ? 12 : hour % 12 )
<< ":" << setfill( '0' ) 

<< setw( 2 ) << minute
<< ":" << setw( 2 ) 

<< second << ( hour < 12 ? " 
AM" : " PM" );

}



Class Time Cont’d
int main()
{

Time t; 

t.setHour( 18 ).setMinute( 30 ).se
tSecond( 22 );

cout << "Universal time: ";
t.printUniversal();

cout << "\nStandard time: ";
t.printStandard();

cout << "\n\nNew standard time: ";

t.setTime( 20, 20, 
20 ).printStandard();

cout << endl;

return 0;
}



Dynamic Memory Management

• To allocate and deallocate memory for any built-in 
or user-defined type
– Operators new and delete

• new
– Allocates (i.e., reserves) storage of the proper size for an 

object at execution time
– Calls a constructor to initialize the object
– Returns a pointer of the type specified
– Works for any fundamental type or any class type

• Heap



Dynamic Memory Management 
Cont’d

• delete
– Destroys a dynamically allocated object 
– Calls the destructor for the object
– Deallocates (i.e., releases) memory from the free store

• Initializing an object allocated by new
– Initializer for a newly created fundamental-type variable
double *ptr = new double( 3.14159 ); 

– Specify a comma-separated list of arguments to the 
constructor of an object

Time *timePtr = new Time( 12, 45, 0 ); 



Dynamic Memory Management 
Cont’d

• Allocating arrays dynamically
int *gradesArray = new int[ 10 ];

• Delete a dynamically allocated array:
delete [] gradesArray;

– This deallocates the array to which gradesArray points 
– If the pointer points to an array of objects

• First calls the destructor for every object in the array
• Then deallocates the memory 

– If the statement did not include the square brackets ([]) and 
gradesArray pointed to an array of objects

• Only the first object in the array would have a destructor call

• After deleting dynamically allocated memory, set the pointer 
that referred to that memory to 0



static Data Member

• Only one copy of a variable shared by all objects of 
a class
– Class-wide information 

• Declaration begins with keyword static
• May seem like global variables but have class scope
• Can be declared public, private, or protected
• static data members of class types (i.e., static 

member objects) that have default constructors
– Need not be initialized because their default constructors 

will be called



static Data Member Cont’d

• Fundamental-type static data members 
– Initialized by default to 0
– A static data member can be initialized once (and only 

once) 
• A const static data member of int or enum type

– Can be initialized in its declaration in the class definition 
• All other static data members

– Must be defined at file scope (i.e., outside the body of the 
class definition)

– Can be initialized only in those definitions



static Data Member Cont’d

• Exists even when no objects of the class exist
– To access a public static class member when no 

objects of the class exist
• Prefix the class name and the binary scope resolution 

operator (::)

Martian::martianCount



static Member Function

• Is a service of the class, not of a specific 
object of the class

• static applied to an item at file scope
– That item becomes known only in that file
– The static members of the class need to be 

available from any client code that accesses the 
file
• We cannot declare them static in the .cpp file—we 

declare them static only in the .h file



static Member Function Cont’d
• Declare a member function static 

– If it does not access non-static data members or non-static member 
functions of the class

• Does not have a this pointer
• Static data members and static member functions exist 

independently of any objects of a class
– When a static member function is called, there might not be any 

objects of its class in memory

• Sometimes it is recommended that all calls to static member 
functions be made using the class name
– not an object handle

• A const static member function is a compilation error



Class Employee
#ifndef EMPLOYEE_H
#define EMPLOYEE_H
class Employee 
{
public:

Employee( const char * const, 
const char * const ); 

~Employee(); 
const char *getFirstName() 
const; 

const char *getLastName() 
const; 

static int getCount(); 
private:

char *firstName;
char *lastName;

static int count; 
}; 
#endif

#include <iostream>
using std::cout;
using std::endl;

#include <cstring>
using std::strlen;
using std::strcpy;

#include "Employee.h"

int Employee::count = 0;

int Employee::getCount() 
{ 

return count; 
}



Class Employee Cont’d
Employee::Employee( const char * const 

first, const char * const last )
{

firstName = new char[ strlen( first ) 
+ 1 ];

strcpy( firstName, first );

lastName = new char[ strlen( last ) 
+ 1 ];

strcpy( lastName, last );

count++; 

cout << "Employee constructor for " 
<< firstName << ' ' << lastName 
<< " called." << endl;

}

const char *Employee::getFirstName() 
const

{
return firstName;

}

Employee::~Employee()
{

cout << "~Employee() called for " 
<< firstName
<< ' ' << lastName << endl;

delete [] firstName; 
delete [] lastName; 

count--; 
}

const char *Employee::getLastName() 
const

{
return lastName;

}



Class Employee Cont’d
#include <iostream>
using std::cout;
using std::endl;

#include "Employee.h"

int main()
{

cout << "Number of employees before 
instantiation of any objects is "
<< Employee::getCount() << endl; 

Employee *e1Ptr = new 
Employee( "Susan", "Baker" );

Employee *e2Ptr = new 
Employee( "Robert", "Jones" );

cout << "Number of employees after 
objects are instantiated is "
<< e1Ptr->getCount();

cout << "\n\nEmployee 1: " 
<< e1Ptr->getFirstName() << " " 

<< e1Ptr->getLastName() 
<< "\nEmployee 2: " 
<< e2Ptr->getFirstName() << " " 

<< e2Ptr->getLastName() << "\n\n";

delete e1Ptr; 
e1Ptr = 0; 
delete e2Ptr; 
e2Ptr = 0; 

cout << "Number of employees after 
objects are deleted is "
<< Employee::getCount() << endl;

return 0;
}



Data Abstraction and 
Information Hiding

• Information Hiding
• Data abstraction

– Client cares about what functionality a class offers, not 
about how that functionality is implemented

• Primary activities of object-oriented programming in 
C++
– Creation of types (i.e., classes)
– Expression of the interactions among objects of those 

types



Abstract data types (ADTs)

• Improve the program development process
• Representing real-world notions Types like int, 

double, char and others are all ADTs
– e.g., int is an abstract representation of an integer

• Capture two notions: 
– Data representation 
– Operations that can be performed on the data



Array Abstract Data Type

• Many array operations not built into C++
– e.g., subscript range checking

• Programmers can develop an array ADT as a 
class that is preferable to primitive arrays

• C++ Standard Library class template vector



Container Classes

• Collection classes
• Classes designed to hold collections of objects
• Services such as insertion, deletion, searching, 

sorting, and member testing
• Arrays, Vectors, Stacks, Queues, Trees, 

Linked lists



Iterators
• Iterator objects
• Commonly associated with container classes
• An object that walks through a collection, returning the next 

item (or performing some action on the next item)
• A container class can have several iterators operating on it at 

once
• Each iterator maintains its own position information

vector<int> v; // fill up v with data... 
vector<int>::iterator it;
for ( it = v.begin(); it != v.end(); it++ ) { 

cout << *it << endl; 
} 
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