
© C O P Y R I G H T S 2 0 1 7 E O M , H Y E O N S A N G A L L R I G H T S
R E S E R V E D

엄현상(Eom, Hyeonsang)
School of Computer Science and Engineering

Seoul National University

- C++ Design Patterns
- JAVA Design Patterns

© C O P Y R I G H T S 2 0 1 7 E O M , H Y E O N S A N G A L L R I G H T S
R E S E R V E D

Outline

C++ Design Patterns

• Definition
– Descriptions of communicating objects and classes that are

customized to solve a general design problem in a particular
context

• Essential Elements
– Pattern name
– Problem
– Solution
– Consequences

• Results and trade-off of applying the pattern

“Design Patterns: Elements of Reusable
Object-Oriented Software,”Erich Gamma,

Richard Helm, Ralph Johnson, John
Vlissides, Addison Wesley, 1995

Visitor: A Design Pattern

• The operation that gets executed depends on both the type of Visitor
and the type of Element it visits

• Adds an operation to a class without modifying the class
– Every class has a virtual method Accept(Visitor& v)
– For every concrete class S that has Accept, the
– Visitor has a method VisitS(S* s)
– An object of class Visitor is passed to the Accept method
– Accept immediately calls VisitS, passing the this pointer as an

argument

“Design Patterns: Elements of Reusable
Object-Oriented Software,”Erich Gamma,

Richard Helm, Ralph Johnson, John
Vlissides, Addison Wesley, 1995

Visitor and ConcreteVisitor

• Visitor
– Declares a Visit operation for each class of ConcreteElement in

the object structure
• ConcreteVisitor

– Implements each operation declared by Visitor
– Each operation implements a fragment of the algorithm defined

for the corresponding class of object in the structure
– ConcreteVisitor provides the context for the algorithm and

stores its local state

“Design Patterns: Elements of Reusable
Object-Oriented Software,”Erich Gamma,

Richard Helm, Ralph Johnson, John
Vlissides, Addison Wesley, 1995

Element and ConcreteElement

• Element
– Defines an Accept operation that takes a visitor as an argument

• ConcreteElement
– Implements an Accept operation that takes a visitor as an

argument
• ObjectStructure

– Can enumerate its elements
– May provide a high-level interface to allow the visitor to visit its

elements
– May either be a composite or a collection such as a list or a set

“Design Patterns: Elements of Reusable
Object-Oriented Software,”Erich Gamma,

Richard Helm, Ralph Johnson, John
Vlissides, Addison Wesley, 1995

Visitor Class

class Visitor
{

public:
virtual void VisitElementA(ElementA*);
virtual void VisitElementB(ElementB*);
virtual void
VisitCompositeElement(CompositeElement*);

protected:
Visitor();

};

“Design Patterns: Elements of Reusable
Object-Oriented Software,”Erich Gamma,

Richard Helm, Ralph Johnson, John
Vlissides, Addison Wesley, 1995

ConcreteVisitor Class

class ConcreteVisitor : public Visitor
{

public:
ConcreteVisitor();
virtual void VisitElementA(ElementA*);
virtual void VisitElementB(ElementB*);
virtual void
VisitCompositeElement(CompositeElement*);

};

“Design Patterns: Elements of Reusable
Object-Oriented Software,”Erich Gamma,

Richard Helm, Ralph Johnson, John
Vlissides, Addison Wesley, 1995

Element Class

class Element
{

public:
virtual ~Element();
virtual void Accept(Visitor&) = 0;

protected:
Element();

};

class ElementA : public Element
{

public:
ElementA();
virtual void Accept(Visitor& v) {
v.VisitElementA(this);
}

};
class ElementB : public Element
{

public:
ElementB();
virtual void Accept(Visitor& v) {
v.VisitElementB(this);
}

};

“Design Patterns: Elements of Reusable
Object-Oriented Software,”Erich Gamma,

Richard Helm, Ralph Johnson, John
Vlissides, Addison Wesley, 1995

CompositeElement Class

class CompositeElement : public Element
{

public:
virtual void Accept(Visitor&);

private:
List<Element*>* _children;

};
void CompositeElement::Accept (Visitor& v)
{

ListIterator<Element*> i(_children);
for (i.First(); !i.IsDone(); i.Next()) {
i.CurrentItem()->Accept(v);

}
v.VisitCompositeElement(this);

}
“Design Patterns: Elements of Reusable
Object-Oriented Software,”Erich Gamma,

Richard Helm, Ralph Johnson, John
Vlissides, Addison Wesley, 1995

How to Use?

CompositeElement* e;
Visitor v;
…
e->Accept(v);
Or
ConcreteVisitor cv;
…
e->Accept(cv);

“Design Patterns: Elements of Reusable
Object-Oriented Software,”Erich Gamma,

Richard Helm, Ralph Johnson, John
Vlissides, Addison Wesley, 1995

Consequences

• Visitor makes adding new OPs easy
• A Visitor gathers related operations and separates

unrelated ones
– Related behavior is localized in a visitor while

unrelated sets are partitioned in subclasses
• Adding new ConcreteElement classes is hard
• Visiting across class hierarchies
• Accumulating state
• Breaking encapsulation

“Design Patterns: Elements of Reusable
Object-Oriented Software,”Erich Gamma,

Richard Helm, Ralph Johnson, John
Vlissides, Addison Wesley, 1995

JAVA Design Patterns

• Elegance always pays off
• First make it work, then make it fast
• Remember the “divide and conquer” principle
• Separate the class creator from the class user (client

programmer)
• When you create a class, attempt to make your names so

clear that comments are unnecessary

© Thinking in Java 4th, Bruce Eckel by
President, MindView, Inc. All Rights

Reserved.

JAVA Design Patterns Cont’d

• Your analysis and design must produce, at
minimum, the classes in your system, their public
interfaces, and their relationships to other classes,
especially base classes

• Automate everything
• Write the test code first (before you write the class)

in order to verify that your class design is complete
• All software design problems can be simplified by

introducing an extra level of conceptual indirection
• An indirection should have a meaning

© Thinking in Java 4th, Bruce Eckel by
President, MindView, Inc. All Rights

Reserved.

JAVA Design Patterns Cont’d

• Make classes as atomic as possible.
Clues to suggest redesign of a class are:
1) A complicated switch statement: consider using
polymorphism
2) A large number of methods that cover broadly
different types of operations: consider using several
classes
3) A large number of member variables that concern
broadly different characteristics: consider using several
classes

© Thinking in Java 4th, Bruce Eckel by
President, MindView, Inc. All Rights

Reserved.

JAVA Design Patterns Cont’d

• Watch for long argument lists
• Don’t repeat yourself
• Watch for switch statements or chained if-else clauses
• From a design standpoint, look for and separate things

that change from things that stay the same
• Don’t extend fundamental functionality by subclassing
• Less is more

© Thinking in Java 4th, Bruce Eckel by
President, MindView, Inc. All Rights

Reserved.

JAVA Design Patterns Cont’d

• Read your classes aloud to make sure they’re logical
• When deciding between inheritance and composition,

ask if you need to upcast to the base type
• Use data members for variation in value and method

overriding for variation in behavior
• Watch for overloading
• Use exception hierarchies
• Sometimes simple aggregation does the job

© Thinking in Java 4th, Bruce Eckel by
President, MindView, Inc. All Rights

Reserved.

JAVA Design Patterns Cont’d
• Consider the perspective of the client programmer and the person

maintaining the code
• Watch out for “giant object syndrome”
• If you must do something ugly, at least localize the ugliness inside

a class
• If you must do something nonportable, make an abstraction for that

service and localize it within a class
• Objects should not simply hold some data
• Choose composition first when creating new classes from existing

classes
• Use inheritance and method overriding to express differences in

behavior, and fields to express variations in state
© Thinking in Java 4th, Bruce Eckel by

President, MindView, Inc. All Rights
Reserved.

JAVA Design Patterns Cont’d

• Watch out for variance
• Watch out for limitation during inheritance
• Use design patterns to eliminate “naked functionality”
• Watch out for “analysis paralysis”
• When you think you’ve got a good analysis, design, or

implementation, do a walkthrough

© Thinking in Java 4th, Bruce Eckel by
President, MindView, Inc. All Rights

Reserved.

	C++ & JAVA�DESIGN PATTERNS
	Slide Number 2
	C++ Design Patterns
	Visitor: A Design Pattern
	Visitor and ConcreteVisitor
	Element and ConcreteElement
	Visitor Class
	ConcreteVisitor Class
	Element Class
	CompositeElement Class
	How to Use?
	Consequences
	JAVA Design Patterns
	JAVA Design Patterns Cont’d
	JAVA Design Patterns Cont’d
	JAVA Design Patterns Cont’d
	JAVA Design Patterns Cont’d
	JAVA Design Patterns Cont’d
	JAVA Design Patterns Cont’d

