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C++ Design Patterns

• Definition
– Descriptions of communicating objects and classes that are 

customized to solve a general design problem in a particular 
context

• Essential Elements
– Pattern name
– Problem
– Solution
– Consequences

• Results and trade-off of applying the pattern

“Design Patterns: Elements of Reusable
Object-Oriented Software,”Erich Gamma,

Richard Helm, Ralph Johnson, John
Vlissides, Addison Wesley, 1995



Visitor: A Design Pattern

• The operation that gets executed depends on both the type of Visitor 
and the type of Element it visits

• Adds an operation to a class without modifying the class
– Every class has a virtual method Accept(Visitor& v)
– For every concrete class S that has Accept, the
– Visitor has a method VisitS(S* s)
– An object of class Visitor is passed to the Accept method
– Accept immediately calls VisitS, passing the this pointer as an 

argument

“Design Patterns: Elements of Reusable
Object-Oriented Software,”Erich Gamma,

Richard Helm, Ralph Johnson, John
Vlissides, Addison Wesley, 1995



Visitor and ConcreteVisitor

• Visitor
– Declares a Visit operation for each class of ConcreteElement in 

the object structure
• ConcreteVisitor

– Implements each operation declared by Visitor
– Each operation implements a fragment of the algorithm defined 

for the corresponding class of object in the structure
– ConcreteVisitor provides the context for the algorithm and 

stores its local state

“Design Patterns: Elements of Reusable
Object-Oriented Software,”Erich Gamma,

Richard Helm, Ralph Johnson, John
Vlissides, Addison Wesley, 1995



Element and ConcreteElement

• Element
– Defines an Accept operation that takes a visitor as an argument

• ConcreteElement
– Implements an Accept operation that takes a visitor as an 

argument
• ObjectStructure

– Can enumerate its elements
– May provide a high-level interface to allow the visitor to visit its 

elements
– May either be a composite or a collection such as a list or a set

“Design Patterns: Elements of Reusable
Object-Oriented Software,”Erich Gamma,

Richard Helm, Ralph Johnson, John
Vlissides, Addison Wesley, 1995



Visitor Class

class Visitor
{

public:
virtual void VisitElementA(ElementA*);
virtual void VisitElementB(ElementB*);
virtual void
VisitCompositeElement(CompositeElement*);

protected:
Visitor();

};

“Design Patterns: Elements of Reusable
Object-Oriented Software,”Erich Gamma,

Richard Helm, Ralph Johnson, John
Vlissides, Addison Wesley, 1995



ConcreteVisitor Class

class ConcreteVisitor : public Visitor
{

public:
ConcreteVisitor();
virtual void VisitElementA(ElementA*);
virtual void VisitElementB(ElementB*);
virtual void
VisitCompositeElement(CompositeElement*);

};

“Design Patterns: Elements of Reusable
Object-Oriented Software,”Erich Gamma,

Richard Helm, Ralph Johnson, John
Vlissides, Addison Wesley, 1995



Element Class

class Element
{

public:
virtual ~Element();
virtual void Accept(Visitor&) = 0;

protected:
Element();

};

class ElementA : public Element
{

public:
ElementA();
virtual void Accept(Visitor& v) {
v.VisitElementA(this);
}

};
class ElementB : public Element
{

public:
ElementB();
virtual void Accept(Visitor& v) {
v.VisitElementB(this);
}

};

“Design Patterns: Elements of Reusable
Object-Oriented Software,”Erich Gamma,

Richard Helm, Ralph Johnson, John
Vlissides, Addison Wesley, 1995



CompositeElement Class

class CompositeElement : public Element
{

public:
virtual void Accept(Visitor&);

private:
List<Element*>* _children;

};
void CompositeElement::Accept (Visitor& v)
{

ListIterator<Element*> i(_children);
for (i.First(); !i.IsDone(); i.Next()) {
i.CurrentItem()->Accept(v);

}
v.VisitCompositeElement(this);

}
“Design Patterns: Elements of Reusable
Object-Oriented Software,”Erich Gamma,

Richard Helm, Ralph Johnson, John
Vlissides, Addison Wesley, 1995



How to Use?

CompositeElement* e;
Visitor v;
…
e->Accept(v);
Or
ConcreteVisitor cv;
…
e->Accept(cv);

“Design Patterns: Elements of Reusable
Object-Oriented Software,”Erich Gamma,

Richard Helm, Ralph Johnson, John
Vlissides, Addison Wesley, 1995



Consequences

• Visitor makes adding new OPs easy
• A Visitor gathers related operations and separates 

unrelated ones
– Related behavior is localized in a visitor while 

unrelated sets are partitioned in subclasses
• Adding new ConcreteElement classes is hard
• Visiting across class hierarchies
• Accumulating state
• Breaking encapsulation

“Design Patterns: Elements of Reusable
Object-Oriented Software,”Erich Gamma,

Richard Helm, Ralph Johnson, John
Vlissides, Addison Wesley, 1995



JAVA Design Patterns

• Elegance always pays off 
• First make it work, then make it fast 
• Remember the “divide and conquer” principle
• Separate the class creator from the class user (client 

programmer) 
• When you create a class, attempt to make your names so 

clear that comments are unnecessary

© Thinking in Java 4th, Bruce Eckel by 
President, MindView, Inc. All Rights 

Reserved.



JAVA Design Patterns Cont’d

• Your analysis and design must produce, at 
minimum, the classes in your system, their public 
interfaces, and their relationships to other classes, 
especially base classes 

• Automate everything
• Write the test code first (before you write the class) 

in order to verify that your class design is complete 
• All software design problems can be simplified by 

introducing an extra level of conceptual indirection 
• An indirection should have a meaning

© Thinking in Java 4th, Bruce Eckel by 
President, MindView, Inc. All Rights 

Reserved.



JAVA Design Patterns Cont’d

• Make classes as atomic as possible. 
Clues to suggest redesign of a class are:
1) A complicated switch statement: consider using 
polymorphism 
2) A large number of methods that cover broadly 
different types of operations: consider using several 
classes
3) A large number of member variables that concern 
broadly different characteristics: consider using several 
classes 

© Thinking in Java 4th, Bruce Eckel by 
President, MindView, Inc. All Rights 

Reserved.



JAVA Design Patterns Cont’d

• Watch for long argument lists 
• Don’t repeat yourself 
• Watch for switch statements or chained if-else clauses
• From a design standpoint, look for and separate things 

that change from things that stay the same 
• Don’t extend fundamental functionality by subclassing 
• Less is more 

© Thinking in Java 4th, Bruce Eckel by 
President, MindView, Inc. All Rights 

Reserved.



JAVA Design Patterns Cont’d

• Read your classes aloud to make sure they’re logical 
• When deciding between inheritance and composition, 

ask if you need to upcast to the base type 
• Use data members for variation in value and method 

overriding for variation in behavior 
• Watch for overloading 
• Use exception hierarchies 
• Sometimes simple aggregation does the job 

© Thinking in Java 4th, Bruce Eckel by 
President, MindView, Inc. All Rights 

Reserved.



JAVA Design Patterns Cont’d
• Consider the perspective of the client programmer and the person 

maintaining the code 
• Watch out for “giant object syndrome”
• If you must do something ugly, at least localize the ugliness inside 

a class 
• If you must do something nonportable, make an abstraction for that 

service and localize it within a class 
• Objects should not simply hold some data 
• Choose composition first when creating new classes from existing 

classes 
• Use inheritance and method overriding to express differences in 

behavior, and fields to express variations in state 
© Thinking in Java 4th, Bruce Eckel by 

President, MindView, Inc. All Rights 
Reserved.



JAVA Design Patterns Cont’d

• Watch out for variance
• Watch out for limitation during inheritance 
• Use design patterns to eliminate “naked functionality” 
• Watch out for “analysis paralysis” 
• When you think you’ve got a good analysis, design, or 

implementation, do a walkthrough 

© Thinking in Java 4th, Bruce Eckel by 
President, MindView, Inc. All Rights 

Reserved.
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