Bmputer

rogramming
Class Members omLecture

AN AL (Eom, Hyeonsang)

School of Computer
Science and Engineering

Seoul National University

©Copyrights 2016 Eom, Hyeonsan g All Rights Reserved

" A
Outline
m Class Scope
m Constructors and Destructors
m Copy Constructors
m const Members
m Member Initidlizer
m friend functions and Classes
m Stfatic Members

m Information Hiding and Abstract Data
Types

m Q&A

" JE
Preprocessor Wrappers

m Prevents code from being included
more than once
#ifndef TIME H

#define TIME_H
.. // code
#Hendr

m Prevents multiple-definition errors

C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Education, 2008

" S
Stream Manipulator setfill

m Specifies the fill chardcter

Wnen an output field wider than the
number of digits in the output value

Appedrs to the left of the digits in the
number

m Applies for all subsequent values

C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Education, 2008

"
Time Class

#i1ftndet TIME_H

#define TIME_H

class Time {

public:

Time(Q);
void setTime(int,int,int);
void printUniversal();
void printStandard();

private:
int hour;
int minute;
int second;
};
#endi f

#include <iostream>
using std::cout;
#include <iomanip>
using std::setfill;
using std::setw;
#include "Time.h"

Time::Time()
{

hour = minute = second = 0;

}

void Time::setTime(Iint h, int m, Iint s)

{

second = (s >=0 && s <60) ? s : O;
+

void Time::printUniversal()

{
cout << setfFill(0");
cout << setw(2) << hour;

}

void Time::printStandard()
{

cout << ((hour == 0 || hour == 12) ? 12 :
hour % 12) << *“:77;

C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Education, 2008

» I
Time Class Cont'd

#include <iostream> t_printStandard():
using std::cout;
using std::endl; t.setTime(99, 99, 99):

#include "Time.h" t.printUniversalQ);

;nt main() t.printStandard();

Time t; cout << endl;

t.printUniversal(); return O-
t.printStandard();
t.setTime(13, 27, 6);

t.printUniversal();

C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Education, 2008

= S
si1zeof Operator for Classes

m Applying operator sizeof to a class
name or to an object of that class

will report only the size of the class’'s
data members

m [ne compiler creates one copy
(only) of the member functions for
agll objects of the cladss

All objects of the class share this copy

m Each object needs its own copy of
the class’'s data

C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Education, 2008

= S
Class Scope

m Class scope contains

Data members (variables declared in the class
definition)

Member functions (functions declared in the
class definition)

m Nonmember functions are defined at file
SCope

m Within g cldss’'s scope

Class members dare dccessible by dll member
functions

m Outside g cldss’'s scope

rublic class members are referenced through a
nandle

m An object name, g reference to an object, or g pointer to an
object

C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Education, 2008

" S
Class Scope Cont'd

m Variables declared in a member function
Have block scope
Known only to that function

m Hiding ag class-scope variable

In a member function, define a variable with the
same name as a variable with class scope

To dccess the nidden class—-scope variable, use the
scope resolution operator (i)

C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Education, 2008

" S
Class Scope Cont'd

m Dot member selection operator (,)
Accesses the object’'s members

Used with an object’'s name or with a reference to
an object

m Arrow member selection operator (->)
Accesses the object’'s members
Used with g pointer to an object

C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Education, 2008

Construct
'S

Argumen

ors with Default

Com initialize data members to a
consistent state

m Construct
argument

A defau

or that defaults all its
S

T constructor

Maximum of one default constructor per

class

B Any change to the default argument
values of a function requires the client

code 1o be recompiled
C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Education, 2008

" A
Destructors

m A special member function
~Time ()

m Called implicitly when an object is
destroyed

Whewn program execution leaves the scope in
which tThat object was instantiated

Performs “terminagtion Aousereeping”
Then the system reclaims the object’'s memory

C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Education, 2008

T
Destructors Cont'd

Receives no parameters and returns no
value

May not specify a return type—not even void
m A class may nhave only one destructor

m [T the programmer does not explicitlv
provide a destructor, tThe compiler creates
an “empty” destructor

C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Education, 2008

Whnewn Constructors and
Destructors are Called?

m Called implicitly by the compiler

m In general, destructor calls are
made in the reverse order of the
corresponding constructor calls

m Storadge classes of objects can dlter
The order in which destructors are
called

C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Education, 2008

"
Objects Defined in Global Scope

m Constructors are called before any other
function (including main) in that file

begins execution

m [ne corresponding destructors are called
whnen mdain terminates

Function exit
m forces a program to terminate immediately

m Offen used to terminate a program whnen an error is
detected

Function abort

m forces the program to terminate immediately without
dgllowing the destructors of any objects to be called

m Usudlly used To indicate an abnormal termination of

The program , . .
C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Educatiors, 2008

Automatic Objects

m Constructors and destructors are
called edch time execution enters
and leaves the scope of the object

m Automatic object destructors are
not called if the program
ferminates with an exit or abort
function

C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Education, 2008

" A
Static Locadl Objects
m Constructor is called only once

When execution first reaches where the
object is defined
m Destructor is cdlled when main
tferminates or the program calls
function exit
Destructor is not called if the program
tferminates with a call to function abort

m Globadl and static objects are destroyed
in the reverse order of tTheir creation

C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Education, 2008

Class CreatAndDestrouy

#include <string>
using std::string;

#1ftndef CREATE_H
#define CREATE H

class CreateAndDestroy
{
public:
CreateAndDestroy(iInt, string);
~CreateAndDestroy();
private:
int objectlD;
string message;

};

#endif

C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Education, 2008

#include <iostream>
using std::cout;
using std::endl;

#include "'CreateAndDestroy.h"

CreateAndDestroy: :CreateAndDestroy(int
ID, string messageString)

{
objectID = ID;
message = messageString;
cout << "Object " << objectlD;
cout << " constructor runs e
cout << message << endl;

}

CreateAndDestroy: :~CreateAndDestroy()
{
cout << "Object " << objectlD;
cout << " destructor runs
cout << message << endl;

by

Class CreatAndDestroy Cont'd

#include <iostream>

using std::cout;

using std::endl;

#include ''CreateAndDestroy.h*

void create(void);

CreateAndDestroy first(1,
"(global before main)");

int main()

{
cout << "EXECUTION BEGINS'"
<< endl;

CreateAndDestroy second(2,
"(local automatic iIn main)");

static CreateAndDestroy
third(3, "(local static iIn
main)");

create();

cout << "EXECUTION RESUMES"
<< endl;

C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Education, 2008

}

CreateAndDestroy fourth(4,
"(local automatic in main)");

cout << "EXECUTION ENDS™
<< endl;

return O;

void create(void)

{

cout << "CREATE BEGINS"
<< endl;

CreateAndDestroy fTifth(5,
"(local automatic 1In
create)");

static CreateAndDestroy
sixth(6, "(local static 1In
create)");

CreateAndDestroy seventh(7,
"(local automatic iIn
create)");

cout << "'CREATE ENDS" << endl;

S
Class CreatAndDestroy Cont'd

C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Education, 2008

Object 1 constructor
runs

EXECUTION BEGINS

Object 2 constructor
runs

Object 3 constructor
runs

CREATE BEGINS

Object 5 constructor
runs

Object 6 constructor
runs

Object 7/ constructor
runs

CREATE ENDS

Object 7 destructor
rUns

1,

Object 5 destructor
runs

EXECUTION RESUMES

Object 4 constructor
runs

EXECUTION ENDS

Object 4 destructor
runs

Object 2 destructor
runs

Object 6 destructor
runs

Object 3 destructor
rUuns

Object 1 destructor
runs

« B
Returning a Reference to an Object
m Alias for the name of an object

Mauv be used on the left side of an
assignment statement

A const reference cannot be used as a
modifiable Ivalue

m A public member function of a class
returns a reference to a private data
member of that class

Client code could dalter private data

Same problem would occur if a pointer to
private data were returned

C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Education, 2008

Default Memberwise Assignment
m Assignment operator (=)

m Can be used to assign an object to
another object of the same type

Eacn data member of the right object is
assigned to the same data member in the
left object

Snhallow copy

m Wnen data members contain pointers to
dunamically dagllocated memory

May cause serious problems

C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Education, 2008

" S
Class Date

#i1fndeft DATE H
#define DATE_H

#include <iostream>
using std::cout;
using std::endl;

class Date #include '"'Date.h

{puinC' Date::Date(1nt m, int d, Int
Date(Int = 1, Int = 1, iInt y)
= 2000); 1 e
void print(Q); month = m;
day = d;
private: year =Yy
int month; +
int day;)]
int year; void Date::print()
1: {
#endi f cout << month << */*

<< day << "/" << year;

}
C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Education, 2008

"
Class Date Cont'd

#include <iostream>
using std::cout;
using std::endl;

#include "'Date.h"
int main(Q)

{
Date datel(7, 4, 2004);

Date dateZ2;

cout << "'datel = "';
datel.print();

cout << "\ndate2 = "';
date2.print();

date2 = datel;

date2.print();
cout << endl;

return O;

C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Education, 2008

" S
Copy Constructors

m Enables pass-by-value for objects

Used to copy originagl object’s vadlues into new
object to be passed to a function or returned
from a function
m Cowmpiler provides a default copy
constructor

Copies each member of the original object into
tThe corresponding member of the new object
(i.e., memberwise assignment)

Snallow copuy

C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Education, 2008

"
Copy Constructors Cont'd

m Wnen data members contain pointers to
dunamically allocated memory

May cause serious problems
m Need to have a deep copy
m May need ad destructor and operator=

C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Education, 2008

"
Class Point

class Point)
{ Point p(1,2); //constructor

Point q(3,4); //constructor
Point r(p); //copy constructor
Point t = q; //copy constructor
p = t; //assignment

public:

Point();
Point(const Point& p);

pr;vate: foo(p); //copy constructor

int x;
int y;

) g
Point::Point(int px, int py)

X = pX;
py;

<
1

Point::Point(const Point& p)

C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Education, 2008

" S
Const Objects

m Keyword const

m [Nne object is not modifiable
compilation errors

Attempts to modify the object are
caunght at compile time rather than
causing execution-time errors

m A const object cannot be modified
by assignment, so it must be
initialized

C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Education, 2008

Const Member Functions
m Only for const objects

m Notf dllowed to modify the object

m Specified as const both in its prototype
and in its definition

m Notf agllowed for constructors and
destructors

m Can be overloagded with a non-const
Version

The compiler chooses whnich overloaded
member function to use based on the object

on which the function is invoked
C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Education, 2008

" S
Class Time

class Time Time::Time(1Int hour, iInt minute, iInt
c second)

public: ¢ setTime(hour, minute, second);

Time(int = 0, int = 0, int = 0); 3 ’ ’ |

void setTime(Int, Int, int);
void setHour(Int);
void setMinute(iInt);
void setSecond(iInt);

void Time::setTime(Int hour, iInt
minute, Int second)
{

setHour(hour);
setMinute(minute);

int getHour() const; setSecond(second);

int getMinute() const; }
int getSecond() const;

i i i void Time::setHour(int h)
void printUniversal() const; {

void printStandard(); // const hour = (h>=08&& h <24) ? h : 0;

] }
private:
int h9ur; void Time::setMinute(int m)
int minute; {
, int second; minute = (m > 0&& m <60) ? m :
: 0;

C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Education, 2008

"
Class Time Cont'd

void Time: :setSecond(int s) void Time::printUniversal() const

{ {
second = (s >= 0 & & s < 60) ? cout << setfill("0°)
s - 0- << setw(2) << hour << ":"
-7 << setw(2) << minute << ":"
h << setw(2) << second;
int Time::getHour() const ¥
{ void Time::printStandard() //
return hour; const
b {
cout << ((hour == 0 || hour
int Time: :getMinute() const == 12) ? 12 - hour % 12)
{ << "' << setfill(0")
.] << setw(2) << minute << "o
return minute; << setw(2) << second
e << (hour < 12 2 " AM™ - "
PM™);
nt Time::getSecond() const }

return second;

i
{
¥

C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Education, 2008

" S
Class Time Cont'd

int main(Q)

{
Time wakeUp(6,45,0);
const Time noon(12,0,0);

wakeUp.setHour(18);
noon.setHour(12);
wakeUp .getHour();
noon.getMinute();
noon.printUniversal();
noon.printStandard();

return O;

C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Education, 2008

S
Member Initiglizer

m Required for initializing,
Const data members
Data members that are references

m Can be used for anvy data member

m Mewmber initializer list

Between g constructor’'s parameter list and the
constructor’s body

Sepadrated from the parameter list with a colon (1)

The data member name followed by parentneses
containing the member’s initial value

C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Education, 2008

Member Initializer
m Mewmber initializer list

Multiple member initializers are separated
by commas

Executes before the body of the constructor
executes

m for g const data member of a class, a
member initializer must be used to
provide the constructor with the

initial value of the data member for
an object of the class

The same is true for references

C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Education, 2008

I
Class Increment

class Increment Increment::Increment(iInt c,
{ int 1)
public: > count(c),
Increment(int c=0,int i=1); // initializer for
// non-const member
void addIncrement() increment(1)
{ // required initializer
count += increment; // for const member
} {
+

void print() const;
void Increment::print() const

private: {
int count; cout << "count =

ot << << " _
const int increment; << count , increment
<< increment << endl;

C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Education, 2008

Composition
m Has—a relationsnip

m A class can nave objects of other classes
as members

m Initializing member objects

Mewmber initializers pass arguments from the
object’'s constructor to member-object
constructors

Mewmber objects are constructed in the order

in wnich they are declared in the class

definition

m Not in the order they dre listed in the constructor’s
member initializer list

s Before the enclosing class object (Aost object) is

constructed . . .
C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Educatioes, 2008

" S
Class Date

class Date Date::Date(int mn, Int dy, iInt
{ yr)
public: ¢ iIfT (mn >0 && mn <= 12)
Date(int =1, Int = 1, iInt = B
1900); month = mn;
void print() const; else
~Date(); {
month = 1;
private: cout << "Invalid month (';
int month; cout << mn << ") set to
int day; }1-\n g
Int year;

year = yr;
int checkDay(int) const; day = checkbDay(dy);

cout << "Date object
constructor for date '';

print();
cout << endl;

}

C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Education, 2008

" S
Class Date Cont'd

int Date: :checkDay(int testDay)

void Date::print() const const

£ L _ _
e static const Int
<< << <<
ngt./. anigar' / day daysPerMonth[13] =
} { 0, 31, 28, 31, 30, 31, 30,
31, 31, 30, 31, 30, 31 };

Date::~Date() iIT (testbDay > 0 && testDay <=

{] daysPerMonth[month])
cout << "Date object return testDay;
destructor for date "; ’
print(); a1- iIT (month == 2 && testDay ==
cout << endl; 29 && (year % 400 == 0 ||
by (year % 4 == 0 && year %

100 =0)))
return testDay;

cout << "Invalid day ("
<< testDay << ") set to 1.\n";

return 1;

C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Education, 2008

"
Class Employee

Employee: :Employee(const char * const
first, const char * const last,

class Employee const Date &dateOfBirth, const Date
&dateOfHire)

gublic: : birthDate(dateOfBirth),

Employee(const char * const, const hireDate(dateOfHire)

char * const,
const Date &, const Date &); int length = strilen(first);
void print() const; Iength = (Iength < 25 ? Iength -
~Employee(); 24);))
strncpy(firstName, first, length);

private: firstName[length] = *\0";

char firstName[25];

char lastName[25 1; length = strlen(last);

const Date birthDate; Ieggf? = (length < 25 2 length :
1: const Date hireDate; strncpy(lastName, last, length);

’ lastName[length] = "\0";

cout << "Employee object constructor:

cout << FirstName << " " << lastName
<< endl;

C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Education, 2008

"
Class Employee Cont'd

int main()

_ _ {
void Employee::print() const Date birth(7, 24, 1949):
{ Date hire(3, 12, 1988):

cout << lastName << ", " Employee manager(''Bob"
<< FirstName << " Hired: "; "Blug" birt% ﬁire)-’

hireDate.print();

cout << " Birthday: ";
birthDate.print();

cout << endl;

by cout << "\nTest Date
constructor with invalid

Employee: :~Employee() values:\n";
{ Date lastDayOff(14, 35,
cout << "Employee object 1994);

destructor: :

cout << endl;
manager.print();

C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Education, 2008

cout << lastName << "', "

<< FirstName << endl;

cout << endl;
return O;

" B
Friend functions and Classes of a

Class

Defined outside that cldass’s scope

Has the right To access the non-public
and public members of tThat class

Standadlone functions or entire classes
Can ennhance performance

The function prototuype in the class

definition preceded by kReyword
friend

C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Education, 2008

" B
Friend functions and Classes of a

Class Cont'd

m Mewmber dccess notions of private,
protected, and public are not relevant
fo friend declarations

Friend decldarations can be placed anuywhere
In a class definition

m Place a declaration of the form
“friend cldss Class2:” in the definition
of class Class 1

All member functions of class ClassZ dre
friends of class Class 1

C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Education, 2008

C|GSS COMVIT void setX(Count &c, int val)

class Count 1
{ c.x = val;
friend void setX(Count &, ¥
int);
int main()
public {
Count() Count counter;
- x(C0)
{ cout << "counter.x: ";
1} counter.print();
void print() const setX(counter, 8);
{ cout << "counter.x after
cout << x << endl- call to setX friend
3 ’ function: ";
counter.print();
private:
int x- return O;
3 +

C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Education, 2008

S
rriend runctions and Classes

of a Class Cont'd
m for class B to be a friend of class A,

class A must explicitly declare (in its
definition) that class B is its friend

m fFriendsnip relation
Neither symmetric nor transitive

m |TIs possible to specify overloaded
functions as friends of a class

Eacn overloaded function intended to be a
friend must be explicitly declared as a
friend of the class

C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Education, 2008

S
this Pointer

Access To an object itself through a
pointer called this (Reyword)

m tnis pointer is not part of the object
ITself

m Passed (by the compiler) as an implicit
argument to edch of the object’'s non-
static member functions

m Implicit access when accessing members
directly

C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Education, 2008

FT e
Class Test
m [ype of the this pointer

Depends on the type of tThe object and
whether the executing member function is

COV]S'I’ void Test::print() const
class Test {
{ cout << "'x= " << X:
public: cout << “Anthis->x="" << this-
: cou
Te§t(I?t = 0): cout << "\n(*this).x="
void print() const; << (*this).x << endl:
_ }
private:
) int x: int main()
; {

Test testObject(12);
Test::Test(iInt value)

: x(value) testObject.print();

{
¥ return O;
}

C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Education, 2008

T e
Cascaded Member-tunction

Calls

m tnabled by member functions
refurning the dereferenced this
pointer

m t.setMinute(30).setSecond(2
2);

Calls t,setMinute(30)
Then calls t.setSecond(22)

C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Education, 2008

" S
Class Time

class Time

{
public:

Time(int = 0, Int =0, Int =0);

Time &setTime(int, int, Int);
Time &setHour(int);

Time &setMinute(iInt);

Time &setSecond(int);

int getHour() const;
int getMinute() const;
int getSecond() const;

void printUniversal() const;

void printStandard() const;
private:

int hour;

int minute;

int second;

C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Education, 2008

Time::Time(Int hr, Int min, Int sec)
{
setTime(hr, min, sec);

}

Time &Time::setTime(int h, Int m, iInt s)
{

setHour(h);

setMinute(m);

setSecond(s);

return *this;

by

Time &Time::setHour(Int h)

{
hour = (h>=0&& h <24) ? h - 0;
return *this;

by

Time &Time: :setMinute(Iint m)

{
minute = (m>=08&& m <60) ?m : O;
return *this;

by

"
Class Time Cont'd

Time &Time::setSecond(Int s)

{ void Time::printUniversal() const
second = (s >= 0 && s <60) ? (
s 0 cout << setfill("0")
return *this; << setw(2) << hour << ":"
¥ << setw(2) << minute
<< "' << setw(2) << second;
int Time::getHour() const ¥
{
return hour; void Time::printStandard() const
by {
cout << ((hour == 0 || hour
int Time::getMinute() const == 12) ? 12 : hour % 12)
{ << "' << setfill(0")
return minute; << setw(2) << minute
3 << "' << setw(2)
<< second << (hour < 12 ? "
AM™ " PM™);

nt Time::getSecond() const 1

return second;

C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Education, 2008

"
Class Time Cont'd

int main(Q)

{

Time t;

t.setHour(18).setMinute(30).se
tSecond(22);

cout << "Universal time: "
t.printUniversal();

cout << "\nStandard time: '";
t.printStandard();

cout << "\n\nNew standard time:

t.setTime(20, 20,
20).printStandard();

cout << endl;

return O;

C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Education, 2008

"
Dunamic Memory Management

m [0 agllocate and dedllocate memory for

any built-in or user-defined type
Operators new and delete

B New
Allocates (i.e,, reserves) stordge of the proper
size for an object at execution time
Calls a constructor to initialize the object
Returns a pointer of the type specified

Worers for any fundamental type or anv class
fupe

m Heap

C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Education, 2008

" B
Dunamic Memory Management

CO V]Iete

Destrovs a dunawmically allocated object
Calls the destructor for the object

Dedllocates (i.e,, reledases) memory from the
free store

m Initiaglizing an object allocated by new

Initiaglizer for a newly created fundamental-

fype variable
double *ptr = new double(3.14159);

Specify a comma-separated list of arguments

fo the constructor of an object

Time *timePtr = new Time(12, 45, 0);
C++ How to Program 6th Ed., P. Deitel and H. M. Deltel Peafson Education, 2008

Duyvy
Cov

amic Memory Management
T'd

m Al

ocating arravs dunamically

INt *gradesArray = new int[10];

m De

lete a dunawmically allocated array:

delete |[] gradesArray;

Tnis dedllocates the drravy to which gradesArray points

If The pointer points to an array of objects

m first calls the destructor for every object in the array

m [hewn dedllocates the memory

If the statement did not include the square brackets ([])

and gradesArray pointed to an array of objects
m Only the first object in the darravy would nave a destructor call

m After deleting duynamically allocated memory, set

the pointer that referred to that memory to O
C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Education, 2008

"
static Data Member

C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Education, 2008

Only one copy of a variable shared by all
objects of ag class
Class—-wide information

Declardtion begins with reyword static

Mauy seem like global variables but nave
class scope

Can be declared public, private, or
protected

static data members of class types (i.e,,
static member objects) that Aagve default
constructors

Need not be initidglized because their default
constructors will be called

" A
static Data Member Cont'd
m fundamental-type static data members

Initialized by default to O

A static data member can be initidlized once
(and only once)

m A const static data member of int or enum
fype
Can be initidlized in ifs declaration in the class
definition
m All other static data members

Must be defined at file scope (i.e., outside the
body of the class definition)

Cawn be initialized ownly in those definitions
C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Education, 2008

"
static Data Member Cont’'d

m EXists even when no objects of tThe
class exist

To daccess a public static class member

when no objects of the class exist

m Prefix the class name and the binary
scope resolution operator (i)

Martian: :martiranCount

C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Education, 2008

= S
static Member function

m |S g service of the class, not of a
specific object of The class

m Stafic applied to an item aft file scope
That item becomes rnown only in that file

The static members of the class need to be
available from any client code tThat
agceesses the file

m We cannot declare them static in the .cpp file—
we decldre them static only in the a file

C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Education, 2008

" A
static Member tunction Cont’d
m Declare a member function staftic

If it does not access non-static data members or non-
static member functions of the class

m Does not have a this pointer

m Static data members and static member functions
exist independently of any objects of a class

Whnewn a static member function is called, there mignt
not be any objects of itfs class in memory

m Sowmetimes it is recommended that all calls to
static member functions be made using the class

Name
not an object nandle

m A const static member function is a compilation

error _ _ _
C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Education, 2008

"
Class Employee

#i1fndef EMPLOYEE_H

#define EMPLOYEE_H #include <iostream>
class Employee using std::cout;
{ using std::endl;
public:
Employee(const char * const, #include <cstring>
const char * const); using std::strlen;
~Employee();] using std::strcpy;
const char *getFirstName()
const; _ " "
const char *getLastName() #include “Employee.h
const;

int Employee::count = O;

static int getCount(); nt Employee: :getCount()

1
private: {
char *firstName;) return count;

char *lastName;

static Int count;

¥
#endi T

C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Education, 2008

"
Class Employee Cont'd

Employee: :Employee(const char * const Employee: :~Employee()
first, const char * const last) {
{ cout << "~Employee() called for "
firstName = new char[strlen(first) << firstName
+117; << " " << lastName << endl;

strcpy(firstName, first);
delete [] firstName;

lastName = new char[strlen(last) delete [] lastName;
+ 173
strcpy(lastName, last); count--—-
by
count++;
const char *Employee: :getLastName()
cout << "Employee constructor for " const
<< firstName << " " << lastName {

<< " called.” << endl;
return lastName;

by
by
const char *Employee::getFirstName()
const
{
return firstName;
by

C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Education, 2008

"
Class Employee Cont'd

#include <iostream> cout << "\n\nEmployee 1: "
using std::cout; << elPtr->getFirstName() << " "
using std::endl; << elPtr->getLastName()
<< "\nEmployee 2: "
#include "Employee_h" << eZ2Ptr->getFirstName() << " "
<< e2Ptr->getLastName() << "\n\n";
int main(Q)
{ delete elPtr;
cout << "Number of employees before elPtr = O;
instantiation of any objects is " delete e2Ptr;
<< Employee: :getCount() << endl; e2Ptr = 0;
Employee *elPtr = new cout << "Number of employees after
Employee("Susan', '"'Baker"); objects are deleted is "
Employee *e2Ptr = new << Employee::getCount() << endl;
Employee("Robert™, *Jones™); return O:

cout << "Number of employees after
objects are iInstantiated i1s "

<< elPtr->getCount();

C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Education, 2008

»
Data Abstraction and Informdation

Hldm

O wforvwa’rlom Hiding

m Data abstraction
Client cares about what functionality a
class offers, not about how that
functionality is implemented
m Primary activities of object-oriented
programming in C++
Creation of types (i.e,, cldsses)

Expression of the interactions among

objects of those types
C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Education, 2008

I
Abstract data types (ADTS)

m Improve the program development
DProCeSS

m Representing readl-world notions Tuypes
iRe Int, double, char and others are all
ADTs

e.g.,, Int is an abstract representation of
an infeger

m Capture two notions:

Data representation

Operations that can be performed on the
data

C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Education, 2008

» I
Array Abstrdct Data Tuype

m Many arrav operations not built
into C++

e.g., subscript range checRing

m Programmers can develop an array
ADT as a class that is preferable to
primifive arrays

m C++ Standard Library class
femplate vector

C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Education, 2008

»
Contdiner Classes

m Collection classes

m Classes designed to hold collections
of objects

m Services such as insertion, deletion,
searching, sorting, and member
festing

m Arraus, Vectors, Stacrs, Queues,
Trees, Linred lists

C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Education, 2008

lTerators

m |ferator objects
m Commownly associated with contdiner classes

m An object that walks through a collection,
returning the next item (or performing some
action on the next item)

m A container class can nave severdal iterators
operafting on it at once

m Eacn iterator maintains its own position

information
vector<int> v; // fill up v with data...

vector<int>::i1terator i1t;
for (it = v.begin(Q); it = v.,endQ); it++) {
cout << *1t << endl;

}
C++ How to Program 6th Ed., P. Deitel and H. M. Deitel, Pearson Education, 2008

	Computer Programming�Class Members 9th Lecture
	Outline
	Preprocessor Wrappers
	Stream Manipulator setfill
	Time Class
	Time Class Cont’d
	sizeof Operator for Classes
	Class Scope
	Class Scope Cont’d
	Class Scope Cont’d
	Constructors with Default Arguments
	Destructors
	Destructors Cont’d
	When Constructors and Destructors are Called?
	Objects Defined in Global Scope
	Automatic Objects
	Static Local Objects
	Class CreatAndDestroy
	Class CreatAndDestroy Cont’d
	Class CreatAndDestroy Cont’d
	Returning a Reference to an Object
	Default Memberwise Assignment
	Class Date
	Class Date Cont’d
	Copy Constructors
	Copy Constructors Cont’d
	Class Point
	Const Objects
	Const Member Functions
	Class Time
	Class Time Cont’d
	Class Time Cont’d
	Member Initializer
	Member Initializer
	Class Increment
	Composition
	Class Date
	Class Date Cont’d
	Class Employee
	Class Employee Cont’d
	Friend Functions and Classes of a Class
	Friend Functions and Classes of a Class Cont’d
	Class Count
	Friend Functions and Classes of a Class Cont’d
	this Pointer
	Class Test
	Cascaded Member-Function Calls
	Class Time
	Class Time Cont’d
	Class Time Cont’d
	Dynamic Memory Management
	Dynamic Memory Management Cont’d
	Dynamic Memory Management Cont’d
	static Data Member
	static Data Member Cont’d
	static Data Member Cont’d
	static Member Function
	static Member Function Cont’d
	Class Employee
	Class Employee Cont’d
	Class Employee Cont’d
	Data Abstraction and Information Hiding
	Abstract data types (ADTs)
	Array Abstract Data Type
	Container Classes
	Iterators

