
©Copyrights 2015 Eom, Hyeonsang All Rights Reserved

Computer Programming
Good Programming
Style 3rd Lecture

엄현상 (Eom, Hyeonsang)

School of Computer
Science and Engineering

Seoul National University

Outline

 Good Programming Style

 Q&A

Guidelines for Writing C/C++ Code

 Point of a Style Guide

Greater Uniformity in Appearance of
Source Code

 Benefit

Enhanced Readability and Hence
Maintainability for the Code

www.literateprogramming.com

File Contents
 Files as Modules to Group Functionality

Avoiding Duplicating Functionality in
Separate Files

 Header Files

To Declare Public Interfaces

 Code Files

To Define Implementations

 If a module calls a function defined externally. it
is desirable to include that function’s
associated .h file in the implementation of the
module

www.literateprogramming.com

Header (Interface) File Contents

 Copyright Statement Comment

 Module Abstraction Comment

 Revision-String Comment; e.g., Id

 Multiple Inclusion #ifdef (a.k.a. “include
guard”)

 Other Preprocessor Directives, #include
and #define

 C/C++ #ifdef

www.literateprogramming.com

Header File Contents Cont’d

 Data Type Definitions (Classes and
Structures)

 typedefs

 C/C++ #endif

 Multiple Inclusion #endif

www.literateprogramming.com

#ifdef __cplusplus // predefined (double underscore)

extern ‘C”{ // Linkage directive informs the compiler not to encode f/n

#endif

…
#ifdef __cplusplus
}
#endif

gcc/g++ Basic Options

 -D

 Set the Value of a Symbol

 -I (Capital i)

 Include Files in a Non-Standard Directory

martini:~$ g++ –c –DINFO_FILE=＼“infofile＼” backup1.C

martini:~$ g++ -c -DUSE_ODIR backup2.C

martini:~$ g++ –c -I../include backup3.C

#define INFO_FILE “infofile”

#define USE_ODIR

#ifdef USE_ODIR
…

#else
…

#endif

indicate where to find the
header files

Code File Contents

 Copyright Statement Comment

 Module Abstraction Comment

 Preprocessor Directives, #include and
#define

 Revision-String Variable

Implementation-File Revision String Should
Be Stored as a Program Variable

www.literateprogramming.com

Code File Contents Cont’d

 Other Module-Specific Variable
Definitions

 Local Function Interface Prototypes

 Class/Function Definitions

www.literateprogramming.com

static const char rcs_id[] = “Id”;

File Format

 Spatial Structure Illustrating the Logical
Structure

Blank Lines to Help Separate Different Ideas

Indentation to Show Logical Relationships

Spaces to Separate Functionality

Each Block to Do Exact One Thing

www.literateprogramming.com

File Format Cont’d

 All Function Definitions and Declarations
Starting in Column Zero

Return Value Type, Function Interface
Signature (Name and Argument List), and
Function Body Open and End Brackets Put
Each on a Separate Line

 Single Space to Separate All Operators
from Their Operands

Exceptions: ->, ., () and [] Operators

www.literateprogramming.com

File Format Cont’d

 Four Spaces for Each Level of
Indentation

 Lines with No Longer Than 80 Characters
Breaking After a Comma

Breaking Before an Operator

Breaking Lines to Illustrate their Logical
Relationships

Aligning the Newline with the Beginning of
the Expression at the Same Level on the
Previous Line

www.literateprogramming.com

File Format Cont’d

 Pure-Block, Fully Bracketed Style for
Blocks of Code

Opening Bracket Put at the End of the Line

 Exception: conditions that are broken across
multiple lines

www.literateprogramming.com

Unique to C++
 Starting public, protected, private and

friend Labels in Column Zero of Class
Declarations

 Declaring the Members in a Consistent
Order

 Putting Simple Inline Function Definitions
on the Same Line as Their Definitions
Using a Pure-Block Style with Four-Space

Indentation for Complex Inline Functions

 Avoiding Putting Complex Function
Implementations into .h Files

www.literateprogramming.com

Class Declaration Format

www.literateprogramming.com

Choosing Meaningful Names

 Variable Names

Lower Case for All Variable Names with an
Underscore as a Separator in C/C++

 E.g., boiling_point

Variable Names Using Mixed Case Letters
Starting with a Lower Case Letter And
Starting Each Subsequent Word with an
Upper Case Letter in Java

 E.g., boilingPoint

www.literateprogramming.com; www.cwu.edu

 Variable Names Cont’d

Careful Choice

 Consistent names

 Similar names for similar data types

 No names that are homophones

 Names that say what the variable represents; i.e.,
nouns

 No generic names such as tmp, buf, and reg

 No intentionally misspelled words such as lo or
lite

 No abbreviations

 No overly long names

Choosing Meaningful Names Cont’d

www.literateprogramming.com; www.cwu.edu

Choosing Meaningful Names Cont’d
 Function Names

Lower Case Letters for Public Function
Names with an Underscore as a Separator

Consistent and Informative Names
 Strong verb that indicates the purpose for a

function that returns no value

 Name that indicates the meaning of the value
returned for a function that returns a value

 Method Names
Method Names Using Mixed Case Letters

Starting with a Lower Case Letter And
Starting Each Subsequent Word with an
Upper Case Letter

www.literateprogramming.com; www.cwu.edu

Choosing Meaningful Names Cont’d

 Classes, Structures, and Type Definitions

Capitalizing the First Letter of the Name of
Each Type That Is Defined

 Constants

Using ALL_UPPER_CASE for Your Named
Constants, Separating Words with the
Underscore Character

www.literateprogramming.com; www.cwu.edu

Comments

 : Describing Why Code Does What It Does

 End-Line Comments

Variable Declarations

Marking #if/#endif Statements

 Short (Single-Line) Comments

 Block Comments

Function Descriptions

 Bold Comments

Delimiting Major Sections of Code

www.literateprogramming.com

Illustrations: Comments

www.literateprogramming.com

Syntax and Language Issues

 Each Line to Do Exact One Thing

 No Use of Side-Effects

 Clear Structure

 Trivial Branch

 while() { … } Rather Than do { … } while
();

 Short Control Structure

 No Deeply Nested Code

 No Use of Global Variable

www.literateprogramming.com

Syntax and Language Issues Cont’d
 No Preprocessor Constants (#defines)

Declaring Vars of Proper Types as consts

Defining enums for Related Sets of Integer
Constants

 Function Declarations/Prototypes for All
Functions

 Explicit Assumptions about the Condition
of Input Data to Routines

 Checking the Return Values of All Library
Function Calls

 Informative Error Messages
www.literateprogramming.com

Formatting

www.cwu.edu

 Formatting Refers to the Indentation,
Alignment, And Use of White Space to Lay
Out Your Program to Increase Its
Readability by Others

 Consistency Is the Key to Producing
Readable Code
While Many Can Argue to Merits of 3 Versus

4 Spaces of Indentation, Placement of Curly
Braces, Etc.

Real Key Is to Adopt a Formatting Style
And Keep to It!

