HOMEWORK 2

2-1 Write a program that translates an alphabetic phone number into numeric form:

Enter phone number: CALLATT
2255288

(In case you don’t have a telephone nearby, here are the letters on the keys: 1=.QZ, 2=ABC, 3=DEF, 4=GHI, 5=JKL, 6=MNO, 7=PRS, 8=TUV, 9=WXY.) If the original phone number contains nonalphabetic characters (digits or punctuation, for example), leave them unchanged:

Enter phone number: 1-800-COLLECT
1-800-265-5328

You may assume that any letters entered by the user are upper case.

2-2 Write a program that reads a 5 x 5 array of integers and then prints the row sums and the column sums:

Enter row 1: 8 3 9 0 10
Enter row 2: 3 5 17 1 1
Enter row 3: 2 8 6 23 1
Enter row 4: 15 7 3 2 9
Enter row 5: 6 14 2 6 0

Row totals: 30 27 40 36 28
Column totals: 34 37 37 32 21

2-3 Write a program that reads a message, then prints the reversal of the message. The output of the program should look like this:

Enter a message: Don’t get mad, get even.
Reversal is: .neve teg ,dam teg t’noD

Hint: Read the message on character at a time (using getchar) and store the characters in an array. Stop reading when the array is full or the character read is ‘\n’.

Revise the program to use a pointer instead of an integer to keep track of the current position in the array.

DCSLab
CSE, SNU
2-4 The following structures are designed to store information about objects on a graphics screen. A point structure stores the x and y coordinates of a point on the screen. A rectangle structure stores the coordinates of the upper left and lower right corners of a rectangle.

```c
struct point { int x, y; }
struct rectangle { struct point upper_left, lower_right; }
```

Write a program that calls functions performing the following operations on a rectangle structure \(r \) passed as an argument:

(a) Compute the area of \(r \).
(b) Compute the center of \(r \), returning it as a point value.
(c) Move \(r \) by \(x \) units in the x direction and \(y \) units in the y direction, returning the modified version of \(r \). (\(x \) and \(y \) are additional arguments to the function.)
(d) Determine whether a point \(p \) lies within \(r \), returning TRUE or FALSE. (\(p \) is an additional argument of type struct point.)

The output of the program should look like this:

```
Enter a upper left point : 0 0
Enter a lower right point : 50 50
rect{(0, 0), (50, 50)}
-area : 2500
-center point : (25, 25)
Enter a direction : 20 20
Move to a new point : rect{(20, 20), (70, 70)}
Enter a point p : 100 100
p(100, 100) is not in the rectangle.
```

2-5 Write the following function:

```c
int *find_middle (int a[], int n);
```

When passed an array \(a \) of length \(n \), the function will return a pointer to the array's middle element. (If \(n \) is even, choose the middle element with the larger index; for example, if \(n=4 \), the middle element is \(a[2] \), not \(a[1] \).)

Write a program that calls the find_middle function. The output of the program should look like this:

```
Enter the array : 2 4 1 3 6 7
The middle element : 3
```

Note: Write a makefile that generates the executables of all the programs, and include your comments in the source files.

HW is due midnight on April 28.
Please submit all the files to sbkum@dcslab.snu.ac.kr